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Abstract— In recent applications, first-order optimization
methods are often applied in the non-stationary setting when
the minimum point is drifting in time, addressing a so-called
parameter tracking, or non-stationary optimization (NSO)
problem. In this paper, we propose a new method for NSO
derived from Nesterov’s Fast Gradient. We derive theoretical
bounds on the expected estimation error. We illustrate our
results with simulation showing that the proposed method
gives more accurate estimates of the minimum points than the
unmodified Fast Gradient or Stochastic Gradient in case of
deterministic drift while in purely random walk all methods
behave similarly. The proposed method can be used to train
convolutional neural networks to obtain super-resolution of
digital surface models.

I. INTRODUCTION

The Fast Gradient (Accelerated Gradient) algorithm is
optimal among the gradient-only methods in optimization of
strongly convex functions [1]. B.T. Polyak analyzed a method
of a similar type in a seminal 1964 publication [2], and called
it the Heavy Ball method. When gradient measurements
are not exact but corrupted with additive noise, in the so-
called stochastic optimization (SO) problem, in [3] it is
argued that the Heavy Ball method has the same convergence
rate as Stochastic Gradient Descent (SGD). The SGD is
asymptotically optimal for the SO. However, after a finite
number of iterations these methods may have different ac-
curacy of estimates. Gradient-only methods receive much
attention of the engineering and computer science researchers
willing to solve large-dimensional problems, where second-
order methods are too expensive, e.g. for deep learning. To
make one step of an iterative learning method faster, in deep
learning one commonly chooses only a small random sample
of training examples (’batch’) to compute the gradient,
making a problem similar to stochastic optimization. The
Fast Gradient is successfully applied for the optimization of
deep learning architectures [4–6].

With the increase of data uploaded to the web every day,
attention in the artificial intelligence community is attracted
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to online learning problems. In this case, the data distribution
becomes non-stationary [7–9]. Online learning of the deep
neural network is a good motivational example of NSO for
a highly nonlinear function.

Classical stochastic approximation algorithms such as
Robbins-Monro procedure use diminishing gain sequence
to estimate the unknown parameters, meaning that with
every new step less weight is given to recent gradient
measurements. To apply them in the NSO setting, we need
to change the diminishing gain sequence to a fixed constant
gain emphasizing recent observations. There are different
parameter drift models for the nonstationary optimization,
starting with a random walk and Kalman-type state evolution,
as well as other models [10–21]. In this paper, we choose
a general model of unknown but bounded parameter drift
similar to [16], [17], [21], which includes random walk-type
drift [10], [13], deterministic evolution and many intermedi-
ate formulations.

Our results show the existence of a finite bound on average
mean squared estimation error. The simulation illustrates
that the proposed method with an appropriate choice of
parameters in all the considered drift scenarios has same
(random drift) or significantly higher (deterministic linear
and nonlinear drift) accuracy compared to the SGD. Several
approaches for proving the convergence are based on the
ordinary differential equations (ODE) analysis, emphasizing
asymptotic rates and not giving any prediction of the es-
timation error bounds after a finite number of steps [19],
[20], [22]. In this paper, we adopt a different an approach
inspired by [23]. The next section of the paper describes the
problem statement and presents the new SFGT algorithm.
The third section contains conditions under which the error
of the minimum estimates provided by the SFGT method
stays within certain bounds. In the fourth section we report
simulation results, and then formulate the conclusions.

II. PROBLEM AND ALGORITHM FORMULATION

We need to find a sequence of parameters θn ∈ Rq which
minimize corresponding differentiable loss functions:

Find θn = Argminθ∈Θfn(θ), ∀n ∈ N (1)

Here and further n is a time instance.
Sometimes (1) is called parameter tracking problem. We

denote the conditional expectation w.r.t. σ-algebra defined
by θ̂0, . . . , θ̂n−1 as En. We consider gradient measurements
Yn(θ) corrupted by additive noise ξn ∈ Rq as the only
available information:

Yn(θ) = ∇fn(θ) + ξn, n ∈ N (2)
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The algorithm proposed in this paper provides a sequence
of estimates {θ̂n}∞n=0 solving the following problem:

Find θ̂n s.t. ∃N,C <∞ : ∀n > N

E‖θ̂n − θn‖
2
≤ C

(3)

We denote f∗n = fn(θn). We assume the following
properties of the functions fn.

Assumption 1. Functions fn have a common Lipshitz
constant L > 0 and strong convexity constant µ > 0:

∀x ∈ Rq ‖∇fn(x)‖ ≤ L‖x− θn‖,
〈∇fn(x), x− θn〉 ≥ µ‖x− θn‖2

(4)

Assumption 2. For every n ≥ 0, drift is bounded as

‖fn(x)− fn+1(x)‖ ≤ a‖∇fn(x)‖+ b, f∗n = f∗ (5)
‖∇fn+1(x)−∇fn(x)‖ ≤ c (6)

Note 1. For a quadratic function fn(x) = (x−θn)TQ(x−
θn) with positive definite Q and minimum point drift satisfy-
ing ‖θn− θn−1‖ ≤ d, ∇fn(x) = 2Q(x− θn), Assumption 1
holds with L = 2‖Q‖, µ = 2λmin(Q), Assumption 2 holds
with a = 2d, b = ‖Q‖d2 and c = 2‖Q‖d.

Note 2. By virtue of Assumption 2, the minimum point
drift can be bounded as follows:

‖θn+1 − θn‖ ≤ µ−1‖∇fn(θn+1)‖ =

= µ−1‖∇fn+1(θn+1)‖ − ‖∇fn(θn+1)‖ ≤ µ−1c

Assumption 3. The noise ξn is zero mean and has a
bounded variance σ2.

Note 3. It is possible to use a weaker assumption
E‖ξn‖r ≤ σr, r ∈ (1, 2) analogously to [24].

To solve the problem defined by (3) with observation
model (2) under Assumptions 1–3 we propose the Stochastic
Fast Gradient for Tracking (SFGT) algorithm, which has the
following form:

1) Choose θ̂0 ∈ Rq , γ0 > 0. Set v0 = θ̂0. Choose h >
0, η ∈ (0, µ), αx ∈ (0, 1) so that αn satisfying the
inequality (7) can always be found. Define H1 = h−
h2L

2 .
2) n-th iteration (n ≥ 0):

a) Find αn ∈ [αx, 1) so that

H1 −
α2
n

2γn+1
> 0. (7)

b) Let γn+1 = (1− αn)γn + αn(µ− η).
c) Choose xn = 1

γn+αn(µ−η)

(
αnγnvn + γn+1θ̂n

)
and compute Yn(xn).

d) Find a new estimate θ̂n+1: θ̂n = xn − hYn(xn).
e) Set vn+1 = 1

γn

[
(1− αn)γnvn + αn(µ− η)xn −

αnYn(xn)
]
.

We show here that the inequality (7) can always be fulfilled
by some choice of parameters, further we identify the best
strategies to set the parameters.

Note 4. The combination of parameters satisfying all
conditions does exist. One can choose 0 ≤ η ≤ µ, then

αx <
√

µ−η
L and γ0 > µ− η, h = L−1. Then γn > µ− η,

and the choice of αx assures that the inequality (7) holds
for αx.

III. MAIN RESULT

Theorem 1: The problem (3) is solved by the SFGT
algorithm with

C =
2

µ
D∞ (8)

where
D∞ = α−1

x

[2a+ hc

4ε
+ 2b+

+(1− αx)(b+A∞c)+

+h2L

2
σ2 +

c2

2η

] (9)

for Γ = maxn≥0γn, ε ∈
(

0, 1
a(1+αx)+hc

(
H1 − α2

x

2Γ

)]
and

αx, η, h chosen in the algorithm.
The estimation error after a finite number of iterations is

bounded as:

Enfn(θ̂n)− f∗n ≤
n∏
i=1

(1− αn)(φ0(θ0)− f∗ + Φ) +Dn

where φ0(x) = f0(θ̂0) + γ0
2 ‖x− v0‖2, Φ = γ0c

2

2µ2 , {αn}∞n=0,
{λn}∞n=0, {An}∞n=0 and {Zn}∞n=0 are sequences defined as

αn ∈ [αx, 1), λ0 = 1, λn+1 = (1− αn)λn (10)

A0 = 0, An+1 = (1− αn)((1− λn)a+An),

Zn = (1− λ)(b+ ac) +Anc,

D0 = 0, Dn+1 = (1− αn)Dn +
a(1 + αn) + hc

4ε
+

+(1 + αn)b+ (1− αn)Zn+

+h2L

2
σ2 +

αnc
2

2η
Note 5. The bound (8), (9) can be optimized by the

algorithm parameters, focusing on the optimality of the
bound for large n. We see that the optimal value for ε is the
maximal one. As we see from the recursion for γn defined
in the algorithm, γn → µ − η, so in (9) we can set Γ =

µ − η and choose optimal ε = 1
a(1+αx)+hc

(
H1 − α2

x

2(µ−η)

)
,

getting (11), which we need to minimize by αx, h, η.

D∞ = α−1
x

[ a2(1 + αx)

2H1 − (µ− η)−1α2
x

+

+(3− αx)b+ ac+ h2L

2
σ2 +

c2

2η

] (11)

The proof is inspired by [23]. In the proof we use several
lemmas proved in the Appendix.

Fig. 1 shows the comparison of theoretically predicted
bounds for the SG and SFGT algorithms. The bound for
the gradient descent with constant step size for tracking
is taken from the paper [21], and because it is devoted to
parameter trackng in deterministic setting, we set the noise
standard deviation σv = 0. We evaluate the bounds on a
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Fig. 1: Comparison of the theoretical bound for the parameter
tracking for gradient descent [21] and for SFGT derived in
this paper

particular problem, same as deterministic linear drift case in
the following section, where the function and the drift law
are described. We vary the drift scale and show the predicted
asymptotic bound on the estimation error norm, ‖θ̂n − θn‖.
We choose the parameters of the methods (step size in case
of gradiend descent, αx, η, h in SFGT) optimizing the
predicted error bound. As we see, theoretically SFGT method
outperforms the gradient descent.

IV. SIMULATION

We compare the proposed SFGT method with earlier
published method aiming at the same problem, Stochastic
Gradient Descent (SG) analyzed for example in [19], [21],
Accelerated Gradient (AG) [23], and Kalman filter as a
baseline. Kalman filter benefits from additional information
about the Hessian matrix compared to the other methods.

We choose q = 10, i.e. 10-dimensional space, the function
to minimize is f(x, θn):

f(x, θn) =
1

2
(x− θn)TQ(x− θn) (12)

where Q = diag{1, 2, . . . , 10} is diagonal matrix and the
drift of minimum point is defined as

θ0 = 0

θn = θn−1 + tn
(13)

We denote the unit matrix as I . We consider three drift
scenarios, all parameterized by drift length d: random (de-
fined as (14) by choosing drift direction from random normal
distribution), linear (defined as (15)) or nonlinear defined as
(16).

tn ∈ N(0, I), tn = d
tn
‖tn‖

(14)

tn = d
t

‖t‖
(15)

m(n) = mod (n, 100),

ζn = 0.01m(n)ζ1 + (1− 0.01m(n))ζ2

tn = d
ζn
‖ζn‖

(16)

The gradient measurement is defined as

g(x, θn) = ∇f(x, θn) + σξn (17)

and ξn is a mean-zero Gaussian vector with i.i.d. components
with unit variance.

We chose to use constant αn = αx, γ0 = µ − η in the
SFGT method. The step-size of the Stochastic Gradient is
denoted as h. The Fast (Accelerated) Gradient method is
implemented as described in [23], section 2.2.1, with step
size h. The Kalman filter is used with unit state evolution
matrix, initial error covariance matrix σ0I , state noise covari-
ance σsI , measurement covariance σmI and measurement
matrix Q. The parameters of the methods unless otherwise
stated are chosen by exhaustive search and set to the values
delivering lowest root mean squared error (RMSE) at the
500th iteration, the values are given in the Table I. In all
cases θ0 = 0, θ̂0 = (35, 15, 35, . . . , 15)T .

Fig. 2 shows parts of the trajectories of the methods and
the plots of the RMSE for the minimum estimation for each
scenario, for the SFGT Opt we show also the error bars
equal to error variances. We show two plots for the SFGT
method, one with theoretically optimal parameters chosen by
minimizing the bound (9) labelled SFGT T, and another one
with parameters chosen by exhaustive search SFGT Opt as
it was done with other methods. In all cases we averaged
over 100 runs of each method.

Fig. 3 shows the dependency of RMSE on 1000-th iter-
ation on drift and measurement noise scale with the other
parameter fixed at d = 0.1, σ = 0.1. We see that while for
the random drift all methods behave similarly, for the linear
and non-linear deterministic drift SFGT Opt outperforms
other methods except the Kalman filter, and the method with
theoretically optimal parameters SFGT T gives estimation
errors slightly worse than SG, but it is worth noting that
for the latter simulation based exhaustive search for the best
parameter was used while SFGT T parameters were chosen
solely using the analytical formula derived in this paper.
The unmodified FG method has lower accuracy than SG and
SFGT in case of deterministic drift.

V. CONCLUSIONS

In this paper, we have given bounds on the estimation
errors of the Stochastic Gradient with Momentum algorithm
in the Nonstationary Optimization Problem. From the theo-
retical results we see that a new Fast Gradient-type method
can be applied in this problem. This is illustrated with
numerical simulation. The proposed method can be used to
train convolutional neural networks to obtain super-resolution
of digital surface models.
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TABLE I: The parameters of the methods used in comparison, L for linear drift, R for random, N for nonlinear

Scenario SG FG (h) Kalman SFGT Opt SFGT T
(σ, d) (h) (σ0, σm, σs) (h, αx, η) (h, αx, η) (h, αx, η)

Figure 2.
L, (0.10, 1.0) 0.19 0.10 2.0, 0.20, 0.6 0.1, 0.09, 0.9 0.08, 0.21, 0.3
N, (0.10, 1.0) 0.19 0.10 2.0, 0.02, 0.2 0.1, 0.09, 0.9 0.08, 0.21, 0.3
R, (0.10, 1.0) 0.15 0.09 0.6, 0.20, 0.6 0.1, 0.20, 0.5 0.08, 0.21, 0.3

Figure 3.
L, (0.10, 0.0) 0.02 0.00 0.00, 0.02, 0.90 0.03, 0.01, 0.80 0.01, 0.13, 0.05
L, (0.10, 0.5) 0.19 0.10 0.90, 0.12, 0.80 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (0.10, 1.0) 0.19 0.10 2.00, 0.20, 0.60 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (0.10, 1.5) 0.19 0.10 1.50, 0.20, 0.10 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (0.10, 2.0) 0.19 0.10 4.00, 0.14, 0.70 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (0.14, 1.0) 0.19 0.10 0.80, 0.24, 0.90 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (0.37, 1.0) 0.19 0.10 0.40, 0.37, 1.00 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (1.00, 1.0) 0.19 0.10 0.40, 0.80, 0.10 0.10, 0.09, 0.90 0.08, 0.21, 0.30
L, (2.72, 1.0) 0.16 0.10 0.60, 1.63, 1.00 0.07, 0.06, 0.90 0.08, 0.21, 0.30
L, (7.39, 1.0) 0.07 0.03 0.40, 4.43, 0.40 0.03, 0.03, 0.80 0.08, 0.21, 0.30
R, (0.10, 0.0) 0.02 0.00 0.00, 0.06, 0.50 0.03, 0.04, 0.20 0.01, 0.13, 0.05
R, (0.10, 0.5) 0.12 0.10 0.50, 0.20, 0.40 0.10, 0.16, 0.70 0.08, 0.21, 0.30
R, (0.10, 1.0) 0.15 0.09 0.60, 0.20, 0.60 0.10, 0.20, 0.50 0.08, 0.21, 0.30
R, (0.10, 1.5) 0.15 0.09 1.80, 0.10, 0.30 0.10, 0.23, 0.20 0.08, 0.21, 0.30
R, (0.10, 2.0) 0.12 0.10 3.20, 0.04, 0.90 0.10, 0.16, 0.70 0.08, 0.21, 0.30
R, (0.14, 1.0) 0.16 0.10 0.60, 0.22, 0.10 0.10, 0.22, 0.40 0.08, 0.21, 0.30
R, (0.37, 1.0) 0.15 0.08 0.20, 0.29, 0.80 0.10, 0.09, 0.90 0.08, 0.21, 0.30
R, (1.00, 1.0) 0.13 0.09 0.20, 0.80, 0.70 0.10, 0.14, 0.70 0.08, 0.21, 0.30
R, (2.72, 1.0) 0.12 0.08 0.60, 4.35, 0.30 0.07, 0.02, 0.30 0.08, 0.21, 0.30
R, (7.39, 1.0) 0.04 0.05 0.40, 8.87, 0.80 0.07, 0.02, 0.90 0.08, 0.21, 0.30

Fig. 2: Trajectory part and RMSE (with variance bar for
SFGT Opt) for directional, random and nonlinear drift sce-
narios (see text)

Fig. 3: Dependency on drift and noise scale for directional,
random and nonlinear drift scenarios (see text)
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VI. APPENDIX

Definition. A pair of a sequence {λn}∞n=0, λn ≥ 0, and
a sequence of functions {φn(x)}∞n=0 are called an An,Φ-
bounded estimate sequence for functions {fn(x)} if

λn → 0, (18)

and there exist a sequence {An}∞n=0, An ∈ R and a constant
Φ < ∞ such that, denoting φ̃0,n(x) = φ0(x) − φ0(θn) +
φ0(θ0),

Eφn(x) ≤ (1− λn)fn(x)+

+An‖∇fn(x)‖+ λn(φ̃0,n(x) + Φ)
(19)

Lemma 1. Let {xn}∞n=0 be an arbitrary sequence in Rq ,
{αn}∞n=0, {λn}∞n=0 be arbitrary sequences in R such that
(10) holds, {An}∞n=0, {Zn}∞n=0 be sequences in R defined
as A0 = 0, An+1 = (1 − αn)[(1 − λn)a + An], Φ = γ0c

2

2µ2 ,
Z0 = 0, Zn+1 = (1− λn+1)(b+ ac) +An+1c, {φn(x)}∞n=0

be a sequence of functions defined using η ∈ (0, µ], γ0 > 0

and r(xn) = fn(xn)− c2

2η − a‖∇fn(xn)‖ − b as follows

φ0(x) = φ∗0 +
γ0

2
‖x− x0‖2

φn+1(x) = (1− αn)(φn(x)− Zn) + αn[r(xn)

+〈Yn(xn), x− xn〉+ (
µ

2
− η

2
)‖x− xn‖2]

(20)

where EYn(xn) = ∇fn(xn).
Then {φn}∞n=0 forms an An,Φ-bounded estimate se-

quence for {fn}∞n=0.
Note. Because αj ≥ αx > 0, {An}, {Zn} are bounded

uniformly in n: An < A∞ < ∞, Zn < Z∞ < ∞, and
A∞ = a

αx
, Z∞ = b+ ac(1+αx)

αx
.

Proof. We use induction by n ≥ 0. Using the fact that
A0 = 0, λ0 = 1 we see that the base holds:

φ0(x) = φ̃0,0(x) ≤ φ̃0,0(x) + Φ

Now we assume that the statement is valid for n and prove
it for n+ 1. We have

Eφn+1(x) ≤ αnfn+1 + (1− αn)(Eφn(x)− Zn) ≤
αnfn+1 + (1− αn)((1− λn)fn(x) + λnφ̃0,n(x)+

+An‖∇fn(x)‖ − Zn)

As long as 1−λn+1 = 1−(1−αn)λn = (1−αn)(1−λn)+αn

Eφn+1(x) ≤ (1−λn+1)fn+1(x)+λn+1φ̃0,n(x)+(1−αn)ρ(x)

ρ(x) = (1− λn)(fn(x)− fn+1(x)) +An‖∇fn(x)‖ − Zn

Using Assumption 2, we derive

φ̃0,n(x)− φ̃0,n+1(x) ≤
≤ |φ0(θn)− φ0(θn+1)| ≤

≤ γ0

2
‖θn − θn+1‖2 ≤

γ0c
2

2µ2

ρ(x) ≤ (1− λn)(a‖∇fn+1(x)‖+ b)+

+An‖∇fn+1(x)‖+Anc+ (1− λn)ac− Zn

Now we get (1− αn)[(1− λn)a+An]‖∇fn+1(x)‖+ (1−
λn)(b+ ac) +Anc−Zn = An+1‖∇fn+1(x)‖, by definition
of Zn and An. We have

An+1 = (1−αn)[(1−λn)a+An] ≤ (1−αx)(a+An) ≤ a

αx

Zn+1 = (1− λn+1)(b+ ac) +An+1c ≤ b+ ac
1 + αx
αx

Lemma 2. The functions φn defined by (20) can be
expressed in form φn(x) = φ∗n + γn

2 ‖x− vn‖
2, with

vn+1 = γ−1
n+1((1− αn)γnvn + αn(µ− η)xn − αnYn(xn))

γn+1 = (1− αn)γn + αn(µ− η)

φ∗n+1 = (1− αn)(φ∗n − Zn)− α2
n

2γn+1
‖Yn(xn)‖2+

+αn
(1− αn)γn

γn+1
(
(µ− η)

2
‖xn−vn‖2−〈xn−vn, Yn(xn)〉)+

+αnr(xn)

Proof. Expression for the γn follows from taking the second
derivative of the equation (20). If we take a gradient of φn+1

and equate it to 0, we get:

(1−αn)γn(vn+1−vn)+αnYn(xn)+αn(µ−η)(vn+1−xn) = 0

which leads to an expression for vn+1. Substituting xn into
(20), we get

φn+1(xn) = (1− αn)(φn(xn)− Z) + αnr(xn) (21)

In the same time, we have

φn+1(xn) = φ∗n+1 +
γn+1

2
‖xn − vn+1‖2 (22)

Using the obtained expression for vn+1, we get

xn − vn+1 = (
(1− αn)γn

γn+1
)(xn − vn) +

αn
γn+1

∇fn(xn)

so that
γn+1

2
‖xn − vn+1‖2 =

γn+1

2
(
(1− αn)γn

γn+1
)2‖xn − vn‖2+

+2
γn+1

2
(
(1− αn)γn

γn+1
)
αn
γn+1

〈xn − vn,∇f(xn)〉+

+
γn+1

2
(
αn
γn+1

)2‖∇fn(xn)‖2

Subtracting (22) from (21), we get a following coefficient
of ‖xn − vn‖2:

(1− αn)
γn
2
− γn+1

2
(
(1− αn)γn

γn+1
)2 =

= (1− αn)
γn
2
− 1

2

(1− αn)2γ2
n

γn+1
=

= (1− αn)
γn
2

(1− (1− αn)γn
γn+1

) =

=
1

2

(1− αn)αn(µ− η)γn
γn+1

and we get an expression for φ∗n+1.
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Lemma 3. (See [23], 2.2.1). If {λn}, {φn(x)} form a
An,Φ-bounded estimate sequence for functions {fn(x)} and
for some sequence {thetan}∞n=0 in Rq , {Dn}∞n=0 in R,
Dn ≥ 0, Dn < D∞ <∞ the following inequalities hold for
all n ≥ 0:

Enfn(θn) ≤ φ∗n +Dn = min
x∈Rq

φn(x) +Dn (23)

then

Enfn(θn)− f∗n ≤
≤ λn(φ0(θ0)− f∗ + Φ) +Dn →n→∞ D∞

(24)

Proof.

Enfn(θn) ≤
≤ φ∗n +Dn ≤
≤ φn(θn) +Dn ≤

≤ (1− λn)fn(θn) + λnφ̃0,n(θn) +Dn

Remembering that φ̃0,n(x) = φ0(x)−φ0(θn)+φ0(θ0) we get

Enfn(θn) ≤ (1− λn)fn(θn) + λnφ0(θ0) + λnΦ +Dn

so

Enfn(θn)− f∗n ≤ λn(φ0(θ0)− fn(θn)) + λnΦ +Dn
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