
Randomized Algorithm for Estimation of Moving Point Position Using
Single Camera

Dmitry Krivokon1, Alexander Vakhitov1

Abstract— Stochastic approximation algorithms (for exam-
ple SPSA) provide a way to solve optimization problems in
the presence of arbitrary but bounded disturbances. In this
paper a problem of position estimation for a moving point
using monocular projective observations is considered. We
add random perturbations to camera position to produce an
algorithm which makes estimates of point position demanding
only that the point’s velocity is bounded in time. This is
superior to the methods currently available in the computer
vision field which all consider very restricted cases of point
movement (constant, movement in plane). We prove theoretical
convergence of estimates and provide numerical simulation for
the algorithm.

I. INTRODUCTION

There are large number of applications where estimation
of a moving point position is essential. Driver assistance
systems rely on accurate knowledge of positions of pedes-
trians and other vehicles to prevent possible collisions [1].
Robotics systems require algorithms for reconstruction of
surroundings including dynamic objects [2], [3] for success-
ful navigation and obstacle avoidance. In computer vision
this problem is generally called simultaneous localization and
mapping (SLAM). There are a lot of well-known algorithms
developed in the field [4], [5], [2], [3], [1]. For the most part
ones that are based on using single camera consider only
static scene and merely filter out moving object. Dynamic
case is generally dealt either by augmenting observational
system with special kinds of sensors like radars or multiple
cameras or by heavily restricting object movement. First
approach is not really interesting for us because use of
additional devices can be impractical and too expensive
for many applications. Lets consider options available in
the second approach. In [6] authors propose a solution for
the case of an object moving with constant speed. Method
presented in [7] copes with a case of objects moving in plane.
Both possibilities greatly decrease practical applicability of
reconstruction systems and allows their usage only in some
narrow field of problems. We on the other hand propose an
algorithm that allows estimation of a moving point position
using single camera in the conditions of arbitrary movement
demanding only that that movement is bounded in time.

We propose use of special types of camera motion and a
filtering algorithm for the point’s position estimation to give

1Dmitry Krivokon and Alexander Vakhitov are with Faculty of Mathemat-
ics and Mechanics, St. Petersburg State University, 198504, Universitetskii
pr. 28, St. Petersburg, Russia, Dmitry Krivikon is also with the Herzen
State Pedagogical University of Russia. dmitry00@gmail.com,
a.vakhitov@spbu.ru. The work was supported by RFBR (project
13-07-00250). The authors acknowledge the Russian Ministry of Education
and Science (project 27.1835.2014/K).

the monocular SLAM system a possibility to estimate depth
of any kind of point (dynamic or static) moving with arbitrary
trajectory. To do this, the theoretically grounded solution
would be to use random motion of the camera, where the
direction of motion will be independent from the obser-
vations of other objects’ trajectories. This motion can for
example be programmed and known, or it can be estimated
using objects which are known to be static (because with
our approach we can definitely distinguish between moving
and static objects). The idea of random motion is inspired
by an approach to linear plant identification using random
perturbation [8]. It leads to a simple filtering algorithm with
constant step size using a gradient approximation as in SPSA
algorithms [9], [10]. This algorithm is also similar to a more
general case described in [11], [12]. We analyze theoretically
convergence properties of this stochastic filtering algorithm,
estimate its mean error and show on simulations how the
algorithm performs.

In the next section, we will briefly describe a problem and
sketch our approach to it.

II. PROBLEM DESCRIPTION

In our problem we consider a single moving camera.
It’s position and hence speed in each moment of time is
supposed to be known. We also assume that we can control
its movement to some extent, specifically we assume that
we can add some perturbations to its positions. To make our
assumptions more clear lets consider a case of a moving
vehicle on which a camera is installed. Vehicle has its own
speed and hence the camera too, we assume that this speed
is present and we can’t change it. Let’s imagine now that
the camera is set on some mechanical platform that allows
its local movement, we control position of the camera inside
this platform and based on that we simulate perturbations for
our method. So in the end the camera has its own velocity,
which is produced by a moving car, and velocity which is
produced by our random perturbations. Later on in formal
description of a problem we will separate these two types
of velocities to make derivation more clear. Our camera
observes a single point which can be static or moving. We
don’t restrict its movement to special cases as was discussed
in introduction. It is assumed that projections of a point on a
camera frame at each moment of time are known. Projections
can be calculated using well known optical flow methods
or explicit matching techniques based on distance in some
feature space. Because of the nature of these projections they
can contain some amount of noise which in general case has
unknown characteristics. In such conditions a good solution

53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

978-1-4673-6090-6/14/$31.00 ©2014 IEEE 5189

for the problem would be some kind randomized stochastic
optimization method [9], [10]. We will now give a short
introduction to the main idea of our method.

A. Algorithm idea

As mentioned before our method is based on perturbation
of a camera position. For illustrative purposes in this section
we will consider initially static camera to which we add
known random perturbation. Also, we will here restrict our
problem only for simplicity to the problem of estimation of
point’s depth only. In some applications even this will be
sufficient because ray which goes from optical center to the
point can be reconstructed based on this point’s projection
on camera frame and from this ray and estimated depth of
a point one can easily calculate its position. This section
presents only rough idea on which our algorithm is based.
Formal and consistent description will be presented in later
sections.

Let’s consider a simple of a camera with position Cn =

(∆
(1)
n ,0,0)T where ∆

(1)
n is our random perturbation. This

camera observes a point (Xn,Yn,Zn)
T and at each moment

of time projection (px
n, py

n)
T of this point on camera frame

is present, such as

px
n =

Xn−∆
(1)
n

Zn
+ vx

n,

py
n =

Yn

Zn
+ vy

n.

where (vx
n,v

y
n) is unknown noise vector. Now lets take

equation for px
n and multiply it by ∆

(1)
n :

px
n∆

(1)
n =

Xn∆
(1)
n

Zn
− ∆

(1)
n ∆

(1)
n

Zn
+ vx

n∆
(1)
n

As in most of SPSA-like algorithms we will generate ∆
(1)
n in

such way that it will have zero expected value. And because
we generate it randomly we can safely assume that it is
independent of points’s position and noise in projections.
Having this lets take expected value of the above equation:

E〈px
n∆

(1)
n 〉= E〈Xn∆

(1)
n

Zn
− ∆

(1)
n ∆

(1)
n

Zn
+ vx

n∆
(1)
n 〉.

Because of the nature of ∆
(1)
n we have E〈Xn∆

(1)
n

Zn
〉 = 0 and

E〈vx
n∆

(1)
n 〉= 0 so now we can simplify everything to this:

E〈px
n∆

(1)
n 〉= E〈∆

(1)
n ∆

(1)
n

Zn
〉,

E〈px
n∆

(1)
n 〉=

Σ∆

EZn
,

where Σ∆ = E〈∆(1)
n ∆

(1)
n 〉. From last equation we can roughly

conclude that if we average px
n∆

(1)
n over time we will get

inverse depth multiplied by some constant and hence we can
estimate it. This derivation is intuitive basis of our algorithm.
Having this we construct our method by considering a
dynamical system where the observation is constructed from

the point’s projection at the current moment of time and some
expression of the form px

n∆
(1)
n . This additional coordinate

in the observation vector represents inverse depth. Then we
apply a simple fixed-step gradient-like procedure to make
estimates of system’s state.

In next section a formal and elaborate description of
our method will be presented alongside with a proof of
convergence of the estimates for the gradient-like procedure.

III. ALGORITHM FORMULATION

A. Notation

We consider a dynamical system with a state θn ∈ R3,
where n ∈ N is discrete moment of time. θ

(1)
n ,θ

(2)
n are

coordinates on the image plane of the intersection of the
ray to from the camera center to the point with the image
plane. θ

(3)
n is inverse depth of the point. If the euclidean

coordinates of the point at the moment n in the camera frame
are Xn,Yn,Zn, then θ

(1)
n = Xn/Zn, θ

(2)
n =Yn/Zn, θ

(3)
n = 1/Zn.

Inverse conversion is obvious and using it we can calculate
object position.

The coordinate frame is defined by the camera. The point
is supposed to be drifting freely in 3D space, so the point
coordinates change due to the point motion can be denoted
as ξ = (ξ

(1)
n ξ

(2)
n ξ

(3)
n)T . In the same time, at each moment,

the camera, not changing its orientation, makes a move ∆n =

(∆
(1)
n ∆

(2)
n ∆

(3)
n)T . Finally, we can formulate the evolution of

point coordinates as Xn
Yn
Zn

=

 Xn−1
Yn−1
Zn−1

+∆n +ξn.

B. Algorithm

We assume following to be true for all n ∈ N:
1) Point is always in the screen, so there exist constants

W,H such that |Xn
Zn
|<W, |Yn

Zn
|< H.

2) Point’s depth lies in some bounded interval: Zn ∈
(Zm,ZM), and Zm,ZM > 0.

3) Point drift is bounded |ξ (1)
n |<D1, |ξ (2)

n |<D2, |ξ (3)
n |<

D3.
4) Random camera motion has finite moments: E|∆(i)

n | j <
δ

j
i , for i = 1 . . .3, j = 1,2.

5) Additive image noise has variances:

E|v(1)n |2 < σ
2
v1, E|v(2)n |2 < σ

2
v2, E|v(1)n − v(1)n−1|

2 < σ
2
d .

The following sequence of actions is proposed:
• do a random camera motion ∆n
• do measurements (coordinates of the point’s projection

and the special third component for the depth estimation
constructed by us) yn

• update the estimates of point’s true projection on camera
and its inverse depth (the formula below)

We denote by yn the vector of observations which are made
at each step. Basic algorithm is of the form

θ̂n+1 = θ̂n−α(θ̂n− yn),

5190

where α > 0 is a step size coefficient.
We propose to do observations as follows:

y(1)n =
Xn−1 +∆

(1)
n +ξ

(1)
n

Zn−1 +∆
(3)
n +ξ

(3)
n

+ v(1)n ,

y(2)n =
Yn−1 +∆

(2)
n +ξ

(1)
n

Zn−1 +∆
(3)
n +ξ

(3)
n

+ v(2)n ,

y(3)n = kn∆
(1)
n

(
Xn−1 +∆

(1)
n

Zn−1 +∆
(3)
n +ξ

(3)
n

− Xn−1

Zn−1
+ v(1)n − v(1)n−1

)
,

where kn = |∆(1)
n |−2.

Next we will prove a theoretical bound on mean error of
estimates produced by such algorithm.

IV. CONVERGENCE OF ESTIMATES

In the following theorem, denote

C2 =

√
18Z4

MZ−4
m +(3Z−2

m (Z2
M +1)(W 2 +H2)+2)2,

C̄3 = σ
2
v1 +σ

2
v2 +σ

2
d +12Z−2

m ((W 2 +H2)(δ 2
3 +D2

3)+

+δ
2
1 +δ

2
2 +D2

1 +D2
2),

C4 = Z−1
m ((W +H)(δ 1

3 +D1
3)+D1

1 +D1
2 +Z−1

m (δ 1
3 +D1

3)).

Theorem If α,ε > 0 are chosen such that

1−2α +α
2C2 +

ε2

2
∈ (0,1)

then there is an asymptotic bound for the algorithm estimates:

E lim
n
‖θ̂n−θn‖2 <

0.5ε−2(2−4α)C4 +α2C̄3

2α−α2C2−0.5ε2

Proof. Let us denote

gn = θ̂n− yn.

We will also denote as En{·} the conditional expectation with
respect to observation history from the beginning of algotihm
execution up to the n−1 st observation, including it and not
including the n-th observation:

En{·}= E{·|yn−1,yn−2, . . .}

The error on the n+1-st step can be represented as:

‖θ̂n+1−θn+1‖2 = ‖θ̂n−θn−αgn+θn−θn+1‖2 = ‖θ̂n−θn‖2+

+α
2‖gn‖2 +‖θn−θn+1‖2 + 〈θ̂n−θn,−αgn〉+

+〈θ̂n−θn,θn−θn+1〉+ 〈−αngn,θn−θn+1〉.

Each term will be analysed in the following text. First of all,
we make three important simplifications:

1) Because Enyn = Enθ̂n+1 and En{θ̂n−θn}= θ̂n−θn,

En〈θ̂n−θn,θn− yn〉= 〈θ̂n−θn,θn−θn+1〉.

2) Using the definition gn = θ̂n− yn

En〈θ̂n−θn,gn〉= ‖θ̂n−θn‖2 + 〈θ̂n−θn,θn− yn〉.

3) Using the same fact,

En〈gn,θn−θn+1〉= En〈θ̂n−θn+1,θn−θn+1〉=

= En〈θ̂n−θn,θn−θn+1〉+‖θn−θn+1‖2.

Therefore,

En‖θ̂n+1−θn+1‖2 = (1−2α)‖θ̂n−θn‖2+

+(1−2α)‖θn−θn+1‖2 +α
2‖gn‖2+

+(2−4α)〈θ̂n−θn,θn−θn+1〉.

We need to bound the three terms (second, third and fourth)
in the last formula.

1) ‖θn−θn+1‖2 :

|θ (1)
n −θ

(1)
n+1|

2 =

(
Xn

Zn
− Xn +ξ

(1)
n +∆

(1)
n

Zn +ξ
(3)
n +∆

(3)
n

)2

=

=

(
Xnξ

(3)
n +Xn∆

(3)
n −Znξ

(1)
n −Zn∆

(1)
n

Zn(Zn +ξ
(3)
n +∆

(3)
n)

)2

.

Because of independence of ∆
(1)
n and other random

values appearing in the formula,

En|θ (1)
n −θ

(1)
n+1|

2 ≤ δ 2
1

Z2
m
+

1
Zm

((WD3 +D1)
2 +W 2

δ
2
3).

Analogously,

En|θ (2)
n −θ

(2)
n+1|

2 ≤ δ 2
2

Z2
m
+

1
Zm

((HD3 +D2)
2 +H2

δ
2
3).

En|θ (3)
n −θ

(3)
n+1|

2 ≤ 1
Z2

m
(D2

3 +δ
2
3).

Finally for this term,

En‖θn−θn+1‖2 ≤ 1
Z2

m
(δ 2

1 +δ
2
2 +δ

2
3 +D2

3)+

+
1

Zm
((WD3 +D1)

2+

+(HD3 +D2)
2 +(W 2 +H2)δ 2

3) =C0.

2) ‖gn‖2 :

En|g(1)n |2 =En

(
X̂n

Ẑn
− Xn +∆

(1)
n +ξ

(1)
n

Zn +∆
(3)
n +ξ

(3)
n

− v(1)n

)2

≤σ
2
v1+

+En((X̂n(Zn− Ẑn)+ Ẑn(X̂n−Xn)+(X̂n(∆
(3)
n +ξ

(3)
n)+

+Ẑn(∆
(1)
n +ξ

(1)
n))(Ẑn(Zn +∆

(3)
n +ξ

(3)
n))−1)2.

Using the decompositions:

Zn− Ẑn = ZnẐn(
1
Ẑn
− 1

Zn
),

Xn− X̂n = Zn(
Xn

Zn
− X̂n

Ẑn
)+

X̂n

Ẑn
(Zn− Ẑn)

5191

and the inequality (∑N
i=1 ci)

2 ≤ N ∑c2
i we get:

En|g(1)n |2 ≤ σ
2
v1 +3

{
W 2

Z2
m
(Z2

M +1)2(θ̂
(3)
n −θ

(3)
n)2+

+
Z2

M
Z2

m
(θ̂

(1)
n −θ

(1)
n)2 +En((Zn +∆

(3)
n +ξ

(3)
n)−1

(
X̂n

Ẑn
(∆

(3)
n +ξ

(3)
n)+∆

(1)
n +ξ

(1)
n))2

}
.

The last term itself can be bounded with 4
Z2

m
(W 2(δ 2

3 +

D2
3)+δ 2

1 +D2
1), so we get

En|g(1)n |2 ≤ σ
2
v1 +3

{
W 2

Z2
m
(Z2

M +1)2(θ̂
(3)
n −θ

(3)
n)2+

+
Z2

M
Z2

m
(θ̂

(1)
n −θ

(1)
n)2 +

4
Z2

m
(W 2(δ 2

3 +D2
3)+δ

2
1 +D2

1)

}
.

Analogously for the second component,

En|g(2)n |2 ≤ σ
2
v2 +3

{
H2

Z2
m
(Z2

M +1)2(θ̂
(3)
n −θ

(3)
n)2+

+
Z2

M
Z2

m
(θ̂

(2)
n −θ

(2)
n)2 +

4
Z2

m
(H2(δ 2

3 +D2
3)+δ

2
2 +D2

2)

}
.

For the third component:

En|g(3)n |2 = En|kn∆
(1)
n (((ξ

(1)
n +∆

(1)
n)Zn−

−Xn(ξ
(3)
n +∆

(3)
n))−1(Zn(Zn +ξ

(3)
n +∆

(3)
n))+

+v(1)n − v(1)n−1)−
1
Ẑn
|2 =

= En(kn∆
(1)
n

(
ξ
(1)
n Zn−Xn(ξ

(3)
n +∆

(3)
n)

Zn(Zn +ξ
(3)
n +∆

(3)
n)

+

+v(1)n − v(1)n−1

)
)2 +En|

1

Zn +ξ
(3)
n +∆

(3)
n

− 1
Ẑn
|2.

For the last term we have

En|
1

Zn +ξ
(3)
n +∆

(3)
n

− 1
Ẑn
|2 ≤ 2(

1
Z2

m
(δ 2

3 +D2
3)+

+(θ
(3)
n − θ̂

(3)
n)2).

En|g(3)n |2 ≤ Env(1)n−1C1 +σ
2
d (vn−1)+2

kn

Z2
m
(1+

+W 2(δ 2
3 +D2

3))+2(
1

Z2
m
(δ 2

3 +D2
3)+(θ

(3)
n − θ̂

(3)
n)2).

where we have denoted as C1 some term independent
of vn−1 and by σ2

d (vn−1) = En(v
(1)
n − v(1)n−1)

2.
Finally,

‖gn‖2 ≤C2‖θ̂n−θn‖2 +C1v(1)n−1 +C3,

where

C2 =

√
18Z4

MZ−4
m +(3Z−2

m (Z2
M +1)(W 2 +H2)+2)2,

C3 = σ
2
v1 +σ

2
v2 +σ

2
d (vn−1)+12Z−2

m ((W 2 +H2)

(δ 2
3 +D2

3)+δ
2
1 +δ

2
2 +D2

1 +D2
2).

3) 〈θ̂n−θn,θn−θn+1〉 :

En〈θ̂n−θn,θn−θn+1〉 ≤

≤En‖θ̂n−θn‖‖θn−θn+1‖≤En‖θ̂n−θn‖
3

∑
i=1
|θ (i)

n −θ
(i)
n+1|.

|θ (1)
n −θ

(1)
n+1| ≤ Z−1

m (W (δ 1
3 +D1

3)+D1
1),

|θ (2)
n −θ

(2)
n+1| ≤ Z−1

m (H(δ 1
3 +D1

3)+D1
2),

|θ (3)
n −θ

(3)
n+1| ≤

D1
3 +δ 1

3
Z2

m
,

En〈θ̂n−θn,θn−θn+1〉 ≤ ‖θ̂n−θn‖Z−1
m ((W +H)

(δ 1
3 +D1

3)+D1
1 +D1

2 +Z−1
m (δ 1

3 +D1
3)) =

= En〈θ̂n−θn,θn−θn+1〉 ≤ ‖θ̂n−θn‖C4

with

C4 =Z−1
m ((W +H)(δ 1

3 +D1
3)+D1

1+D1
2+Z−1

m (δ 1
3 +D1

3)).

En‖θ̂n+1−θn+1‖2 ≤ (1−2α +α
2C2)‖θ̂n−θn‖2+

+‖θ̂n−θn‖((2−4α)C4)+α
2En{C0vn−1 +C3}.

Taking the unconditional expectation, we get

E‖θ̂n+1−θn+1‖2 ≤ (1−2α +α
2C2)‖θ̂n−θn‖2+

+‖θ̂n−θn‖((2−4α)C4)+α
2C̄3 ≤

≤ (1−2α +α
2C2 +

ε2

2
)‖θ̂n−θn‖2 +

(2−4α)C4

2ε2 +α
2C̄3.

From the well-known geometric progression formula, which
can be applied because

1−2α +α
2C2 +

ε2

2
∈ (0,1)

we get the asymptotic bound

lim
n→∞

E‖θ̂n−θn‖2 =
0.5ε−2(2−4α)C4 +α2C̄3

2α−α2C2−0.5ε2 .

5192

Fig. 1. Example of true trajectory (solid line) and algorithm’s estimates
(dotted line) for the simple case without point movement and small initial
error.

Fig. 2. Same setting as in Fig. 1 but with large initial error

Fig. 3. Average inverse depth estimation error and its variance produced
by algorithm in the case of point movement.

V. SIMULATION

A. Setting

In our simulation we consider single camera observing
single point. Let’s denote camera center at nth moment of
time as Cn. For simplicity we don’t assume any rotation of
camera frame because it’s irrelevant to our algorithm and
any transformation of input caused by it can be removed
in image domain beforehand. Camera center moves with
constant speed VC

n (this can be speed of a possible car on
which camera is installed) according to the law:

Cn =Cn−1 +VC
n .

We add random pertrubation to camera position on each
frame:

Cn =Cn−1 +VC
n −∆n,

where ∆n - is a random vector drawn from distribution
on a sphere. We form vector ∆n first by generating two
random angles φ and θ using uniform distributions on
ranges [0,2π] and [0,π] accordingly. After that we set ∆n =
0.1∗(sin(θ)cos(φ),sin(θ)sin(φ),cos(θ))T . Another entity in
our experiment is point which is observed by the camera.
We denote its coordinates relative to camera frame as Pn =
(Xn,Yn,Zn). If point has its own velocity V P

n than equation
for coordinates update is:

Pn = Pn−1−VC
n +V P

n .

In all of our tests initial position of camera is set to C0 =
(0,0,0)T and point to P0 = (0,0,10)T . Measurement noise
is uniform with expected value equal to zero and varies in
range [−0.001,0.001] for both x and y coordinates of point
projection on camera plane.

B. Results

In the most basic scenario we assumed that VC
n = 0 and

V P
n = 0. We tested our algorithm in different conditions of

initial estimate error. In case of small initial error algorithm
successfully tracks inverse depth which can be seen on Fig.
1. In the case of large initial error there is a period of initial
convergence to the true trajectory after which algorithm
continues to track point position (Fig. 2). In this setting we
set algorithm’s parameters as follows. Initial estimate was
set to θ0 = (0,0,1.1), α was set to 0.1.

The most interesting scenario in our testing is when a
camera and a point move in same direction and with the
same speed. In this setting without adding random camera
movement one wouldn’t able to estimate point position in
any possible way because. We set VCn =V Pn = (0.5,0,0)T .
Fig. 3 shows averaged inverse depth estimation error along
with its variance for our algorithm (α = 0.001) Also in Fig.
4 we show error for estimates of X/Z to illustrate that our
approaches successfully track it too. Initial estimate in this
test was set to θ0 = (0,0,0.2). It is clear that even in such
complicated scenario our method produce reliable estimates
of point position.

5193

VI. CONCLUSIONS

We have presented an approach to reconstruct the trajec-
tories of moving objects observed by a moving camera. The
approach is based on random camera motions which are
independent of any motion in the scene. The approach can
be implemented either as a special device with programmed
random camera motion, where the trajectory of a device is
known a priori, or as a device moving in random directions,
the motion of which can be reconstructed using static points
in the scene with conventional monocular SLAM approaches.

In this paper we have shown theoretical arguments for the
convergence of our method, as well as numerical simulation
results for it. We show numerically that our approach suc-
ceeds in reconstruction of the true point trajectory in case of
camera and point moving with same speed, as in real traffic
flow.

In the future, we’d like to create a complete SLAM system
built based on a proposed here principle, and we are planning
to make more theoretical research in the field of optimal
parameter choice for the algorithms. Also, we are considering
using our method combined with modified Kalman filter to
produce estimates of better quality.

REFERENCES

[1] Z. Huijing, C. Masaki, S. Ryosuke, S. Xiaowei, C. Jinshi, and
Z. Hongbin. Slam in a dynamic large outdoor environment using
a laser scanner. In Robotics and Automation, IEEE International
Conference on, pages 1455–1462. IEEE, 2008.

[2] M.W.M.G. Dissanayake S.B. Williams, P. Newman and H.F. Durrant-
Whyte. Autonomous underwater simultaneous localisation and map
building. In Robotics and Automation, Proceedings. IEEE Interna-
tional Conference on, pages 1143–1150, 2000.

[3] J. Kim and S. Sukkarieh. Autonomous airborne navigation in unknown
terrain environments. Aerospace and Electroninc Syststems, IEEE
Transactions on, 40(3):1031–1045, 2004.

[4] A.J. Davison and D. Murray. Simultaneous localization and map-
building using active vision. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 24(7):865–880, 2002.

[5] P.M. Newman. On the structure and solution of the simultaneous
localization and mapping problem. University of Sydney, 1999.

[6] M. Han and T. Kanade. Reconstruction of a scene with multiple
linearly moving objects. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, volume 2, pages 542–549.
IEEE, 2000.

[7] P. Sturm. Structure and motion for dynamic scenesthe case of points
moving in planes. Computer VisionECCV 2002, pages 507–509, 2002.

[8] A.T. Vakhitov, V. Vlasov, and O.N. Granichin. Adaptive control
of siso plant with time-varying coefficients based on random test
perturbation. In American Control Conference (ACC), 2010, pages
4004–4009. IEEE, 2010.

[9] O.N. Granichin. Procedure of stochastic approximation with distur-
bances at the input. Automation and Remote Control, 53(1):232–237,
1992.

[10] J.C. Spall. Multivariate stochastic approximation using a simultane-
ous perturbation gradient approximation. Automatic Control, IEEE
Transactions on, 37(3):332–341, 1992.

[11] O.N. Granichin, L.S. Gurevich, and A.T. Vakhitov. Discrete-time
minimum tracking based on stochastic approximation algorithm with
randomized differences. In Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on, pages 5763–5767. IEEE,
2009.

[12] O.N. Granichin, V. Volkovich, and D. Toledano-Kitai. Randomized
Algorithms in Automatic Control and Data Mining. Springer-Verlag:
Heidelberg New York Dordrecht London, 2014.

Fig. 4. Average estimation error for X/Z and its variance in the case of
point movement.

Fig. 5. Trajectory example for the case of point movement.

5194

