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Abstract—The problem of estimating the coordinates of a moving object based on visual data
arises in numerous applications, starting from robotic and ending with the consumer market
of portable devices. Traditional algorithms for solving this problem require either additional
devices or significant constraints on the possible motion of the object. In this work, we present a
new approach to tracking the object that lets us estimate its position under sufficiently general
conditions. The method is based on randomizing the camera location independently of the
object’s motion; since the test disturbance we choose is independent, it lets us construct a
feasible iterative pseudogradient estimation algorithm.
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1. INTRODUCTION

Traditional approaches to estimating the coordinates of a moving object mostly either require
additional resources or impose constraints on the observation conditions. For instance, popular
methods include those that use two or more synchronized cameras [1, 2]. Such approaches use
simple methods for triangulating the position of three-dimensional points [3] and construct the
object motion’s trajectory with this triangulation. To ensure the accuracy of the resulting estimates,
mutual positions of the cameras have to be constantly calibrated, which is often a hard problem
in itself. As an alternative to additional cameras, surveillance systems can be constructed with
specialized sensors. Such sensors may include, for instance, a camera combined with an infrared
projector [4]. The projector projects onto the scene in the infrared range a predefined unique
pattern of dots with a fixed frequency (usually 60 Hz); the pattern is then detected by the camera,
and coordinates of reference points on the pattern are reconstructed by triangulation techniques
based on known coordinates of the dots’ projections on the camera and the projector. Laser range
finders are also often used to evaluate position [5]; they compute distance by measuring the time
when a ray of light returns from the source to the detector. A different alternative in solving the
problem would be to use additional constraints on the character of the object’s motion. This is
usually mostly relevant to outdoor surveillance applications where one can assume, for instance,
that observed objects move along a plane [6] (guarding systems) or with constant speed [7] (traffic
surveillance).

In this work we develop a new approach proposed in [8, 9], where we can get an estimate of
the object’s position by its image from a single camera without any significant constraints on
the character of its motion. The use of only one camera significantly simplifies the surveillance
system, thus extending its applicability. The proposed algorithm also significantly differs from
reconstruction methods with a single camera [10] that consider in the original problem setting
only static objects. The new approach is based on more fundamental ideas of using randomized
(search) stochastic approximation algorithms (RSAA) that were first proposed in the works of
O.N. Granichin [11–13], B.T. Polyak, A.B. Tsybakov [14], and J.C. Spall [15]. These methods

297



298 KRIVOKON et al.

solve estimation and identification problems for “almost arbitrary noise” (e.g., for unknown but
bounded deterministic noise). Algorithms of RSAA type consist of the test disturbance generation
stage (the test disturbance must be independent on the noise), the data collection stage, and
the gradient approximation (computing the pseudogradient) towards which the previous estimate
is then modified. For the problem of estimating the coordinates of a moving object, stochastic
approximation algorithms with constant step size that solve the tracking problem for the minimum
of a nonstationary functional [16–18] are most relevant. Modern studies [19–23] of general properties
of estimates on randomized (search) stochastic approximation algorithms with constant step size
have motivated us to apply them to the problem of estimating the trajectory of a moving object
by its image from a single camera that randomly changes its location. This work is devoted to this
approach.

The paper is organized as follows. The introduction is followed by a section where we present the
formal observation model with a single camera; Section 3 contains the problem setting and presents
the basic idea of the algorithm. In Section 4, we formulate the algorithm, in Section 5 we present the
main theoretic result on the upper bound on the mean squared error of the algorithm’s estimates.
Experimental modeling results of this work and testing in real life conditions are presented in
Section 6. Section 7 concludes the paper.

2. OBSERVATION MODEL

Usually in object coordinates estimation problems with a camera the observation model is the
“pinhole model” [3] with a camera whose lens is represented as a small hole in some opaque box
with a light-sensitive element inside. The camera’s location is defined by its optic center vector
C = (C(1), C(2), C(3))T that represents the location of this hole, the focal distance f that defines
the distance from optic center C to the camera plane, and the camera’s angular position defined
with the rotation matrix R ∈ R

3×3. The rotation matrix and optic center coordinates define a
transformation from some fixed global coordinate system to the local coordinate system of the
camera. Here and in what follows T denotes transposition, R is the space of real numbers, E denotes
expectation. Observable variables in the model include object projections that are located in the
camera’s field of view.

In the simplest case object coordinates are given by some point P = (P (1), P (2), P (3))T. To find
the projection of point P on the camera plane we have to draw a ray from the point P to the

Fig. 1. The camera model.
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Fig. 2. A sample object used to calibrate the camera.

optic center C. The projection will be given by the point where this ray will cross the camera
plane. Figure 1 schematically shows the entire process for the case when C = (0, 0, 0)T. To find
coordinates of the projection onto the camera plane p = (p(1), p(2))T one can use simple properties
of homothetic triangles. Considering homothetic triangles ABC and A′B′C, we get

p(2) = f
P (2)

P (3)
.

We can similarly derive p(1) = f P (1)

P (3) . If the rotation matrix is not unit, the corresponding equations
look like

p(1) = f
R11P

(1) +R12P
(2) +R13P

(3) + t(1)

R31P (1) +R32P (2) +R33P (3) + t(3)
,

p(2) = f
R21P

(1) +R22P
(2) +R23P

(3) + t(2)

R31P (1) +R32P (2) +R33P (3) + t(3)
,

where vector (t(1), t(2), t(3))T = −R−1(C(1), C(2), C(3))T.

Real life cameras seldom can fully satisfy the presented model due to their use of lenses. To
correct for the optical distortions researchers use various nonlinear projection coordinate correction
models. One popular such model is the model presented in [24] that does correction according to
the following rule:

p
(1)
d = p(1)u (1 +K1r

2 +K2r
4 + . . .) +

(
P2(r

2 + 2p(1)u

2
) + 2P1p

(1)
u p(2)u

)
(1 + P3r

2 + P4r
4 + . . .),

p
(2)
d = p(2)u (1 +K1r

2 +K2r
4 + . . .) +

(
P2(r

2 + 2p(2)u

2
) + 2P1p

(1)
u p(2)u

)
(1 + P3r

2 + P4r
4 + . . .),

where (p
(1)
u , p

(2)
u )T are projection coordinates without optical distortions, and (p

(1)
d , p

(2)
d )T are dis-

torted coordinates, r =
√
(p

(1)
u )2 + (p

(2)
u )2. Coefficients K1,K2, . . . , P1, P2, . . . are called distortion

coefficients, their number regulates the accuracy of the resulting model. Together with the fo-
cal distance, these coefficients are called internal parameters of the camera. The location of the
camera’s canter and the rotation matrix are called external parameters of the camera. Internal
parameters are assumed to be fixed during the entire time of the observation process, and they
are usually computed in advance during the calibration process. For calibration one can use an
object with a known three-dimensional structure, say a chessboard (Fig. 2). Using automatic de-
tection techniques for points of the chessboard [25] and knowing the sizes of the cells one can fit
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internal parameters by minimizing projection error (p
(1)
d − p̂

(1)
d )2 + (p

(2)
d − p̂

(2)
d )2, where (p

(1)
d , p

(2)
d )T

are projection coordinates returned by the chessboard detector, and (p̂
(1)
d , p̂

(2)
d )T are their estimates

obtained with current values of the internal parameters. This kind of approach to calibration has
been described in [26]. External parameters of a camera can also be computed with objects with
known scene geometry, but such an approach will hardly be practical. Therefore, commonly used
methods usually estimate both external camera parameters and visible static objects at the same
time. A standard scheme of such an approach is shown in [2]. In what follows we will assume that
all internal and external camera parameters are known. To simplify the algorithm’s formulation
we will assume that the camera’s rotation matrix, its focal distance, and distortion coefficients are
unit. We can do it without loss of generality because one can first fix all optical distortions with
the model above, divide the coordinates of observed projections by the focal distance, and obtain
a projective transformation for the projection coordinates from the rotation matrix that reduces
them to the case of unit rotation matrix [3, 27].

3. IDEA OF THE ALGORITHM

Let external and internal parameters of the camera be known, and let n = 1, 2, . . . be discrete
time. As the observed object at time moment n we consider a point with coordinate vector Pn =

(P
(1)
n , P

(2)
n , P

(3)
n )T. Coordinates of its “noisy” projection to the camera plane pn = (p

(1)
n , p

(2)
n )T

satisfy equations

p(1)n =
P

(1)
n − C

(1)
n

P
(3)
n − C

(3)
n

+ v(1)n ,

p(2)n =
P

(2)
n − C

(2)
n

P
(3)
n − C

(3)
n

+ v(2)n ,

where vn = (v
(1)
n , v

(2)
n )T is the vector of unknown noises.

It is required to construct estimates of the motion’s trajectory for the point Pn based on known
coordinates of its projections pn at every time moment n.

Example. Consider the case when camera position is given as Cn = (Δ
(1)
n , 0, 0)T, where Δ

(1)
n is a

known random test disturbance along the x axis with zero expectation and variance σ2
1 = EΔ

(1)
n

2

independent of the position of the point Pn and noise vector vn. Equations for projections take the
form

p(1)n =
P

(1)
n −Δ

(1)
n

P
(3)
n

+ v(1)n ,

p(2)n =
P

(2)
n

P
(3)
n

+ v(2)n .

Multiplying the first expression by p
(1)
n by Δ

(1)
n , we get

p(1)n Δ(1)
n =

P
(1)
n Δ

(1)
n

P
(3)
n

− Δ
(1)
n Δ

(1)
n

P
(3)
n

+ v(1)n Δ(1)
n .

Since Δ
(1)
n are centered and independent of the position of the point Pn and noise v

(1)
n , for the

expectation we derive step by step that

Ep(1)n Δ(1)
n = E

[
P

(1)
n Δ

(1)
n

P
(3)
n

− Δ
(1)
n Δ

(1)
n

P
(3)
n

+ v(1)n Δ(1)
n

]
= −σ2

1E
1

P
(3)
n

, (1)
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since E P
(1)
n Δ

(1)
n

P
(3)
n

= E P
(1)
n

P
(3)
n

EΔ
(1)
n = 0 and Ev

(1)
n Δ

(1)
n = Ev

(1)
n EΔ

(1)
n = 0.

Equations (1) show that, averaging p
(1)
n Δ

(1)
n over time, we can get a value equal to the average

inverse depth of the observed point Γn = 1

P
(3)
n

multiplied by some known constant. Knowing the

inverse depth, the object coordinates can be found as

P (1)
n =

p
(1)
n

Γn
+Δ(1)

n , P (2)
n =

p
(2)
n

Γn
, P (3)

n =
1

Γn
.

This example intuitively illustrates the main result of this work. The algorithm we propose
below results by considering a certain dynamical system where observations are represented in a

form similar to p
(1)
n Δ

(1)
n . Inverse depth estimates for the observed point can be computed with a

simple pseudogradient method with fixes step according to the above logic.

4. PROBLEM SETTING AND ALGORITHM FOR SOLVING THE PROBLEM

Consider a coordinate system defined with respect to the position and spatial orientation of
the camera. We assume that the observed object freely drifts (moves) in the three-dimensional
space. Let n = 1, 2, . . . be the discrete time and let object coordinates at time moment n with

respect to the camera be equal to P
(1)
n , P

(2)
n , P

(3)
n . We denote the vector of object coordinates by

Pn = (P
(1)
n , P

(2)
n , P

(3)
n )T and consider the dynamics of its change with time. We will assume that at

every time moment n = 1, 2, . . . coordinates of vector Pn change by the values ξn = (ξ
(1)
n , ξ

(2)
n , ξ

(3)
n )T.

The magnitude of this change depends both on the velocity of the object itself and on the discretiza-
tion interval. For instance, if we get new frames with low frequency changes in the object’s position
will be larger, which will complicate the estimation problem. Similar to the previous section, in-
ternal and external camera parameters are assumed to be known, and an observation is a noisy
projection of the point to the camera plane.

Suppose that with the same discretization frequency the at every time moment n = 1, 2, . . .

moves, and this motion is given by a measurable vector Δn = (Δ
(1)
n ,Δ

(2)
n ,Δ

(3)
n )T. Here the se-

quence {Δn} represents a realization of independent identically distributed random vectors with
distribution symmetric with respect to zero that are independent of the object’s position and noise
in the measurements of projection points on the camera plane.

In the above notation, a change in the object position over time satisfies equation

⎛
⎜⎜⎜⎝

P
(1)
n

P
(2)
n

P
(3)
n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P
(1)
n−1

P
(2)
n−1

P
(3)
n−1

⎞
⎟⎟⎟⎠+Δn + ξn, (2)

and the coordinates of its “noisy” projection to the camera plane pn = (p
(1)
n , p

(2)
n )T satisfy equations

p(1)n =
P

(1)
n

P
(3)
n

+ v(1)n , p(2)n =
P

(2)
n

P
(3)
n

+ v(2)n .

We are to find the distance from the object to the camera plane at every time moment.

We make the following assumptions for n = 1, 2, . . . .

1. The observed object always resides in the camera’s field of view, i.e., there exist H1 and H2

such that | P (i)
n

P
(3)
n

| < Hi, i = 1, 2. Parameters H1 and H2, in essence, correspond to physical size of

the camera’s light-sensitive element, i.e., width and height respectively.
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2. The inverse value of the depth of a point Γn = 1

P
(3)
n

lies in a finite interval: Γn ∈ MΓ =

(Γmin,Γmax) and Γmin,Γmax > 0. Bounds Γmin and Γmax show how far from or near to the camera
the object may be located. (It will be clear from Theorem 1 below that the closer an object is, the
more accurate the bounds will be, which corresponds to our intuition.)

3. The drift of a point is bounded: |ξ(1)n | < D1, |ξ(2)n | < D2, |ξ(3)n | < D3. Coefficients D1,D2,D3

are directly related to discretization time and the object’s own velocity. They will also influence
the upper bound of the algorithm’s accuracy. (This is the only constraint on the object’s motion.)

4. The sequence of random changes in camera location {Δn} is a measurable realization of
random vectors in R

3 that are mutually independent and independent of the current object and

observation errors, with independent components and finite statistical moments: E|Δ(i)
n | < δi < ∞,

E|Δ(i)
n |2 � σ2

i < ∞ for i = 1, 2, 3, E|Δ(1)
n |4 � σ4

4 < ∞. Besides, random values Δ
(1)
n have a symmet-

ric distribution and σ2
1 > 0.

5. Additive noise is bounded by

|v(1)n | < c1, |v(2)n | < c2, |v(1)n − v
(1)
n−1| < cd,

or, if additive noise has random nature, it is independent of Δn and bounded in mean square:

E|v(1)n | < c1, E|v(2)n | < c2, E|v(1)n − v
(1)
n−1|2 < c2d.

Consider the following algorithm:

• set n := 0, choose algorithm step size α > 0, choose an arbitrary initial approximation for the
inverse distance depth value Γ̂0 ∈ MΓ;

• iteration n := n+ 1;
• generate and implement a test disturbance for the camera location Δn ∈ R

3;

• make observations pn = (p
(1)
n , p

(2)
n )T (read from the camera);

• compute the “pseudogradient” gn as

gn = Γ̂n−1 − Δ
(1)
n

σ2
1

(p(1)n − p
(1)
n−1); (3)

• update the estimate of the inverse distance depth according to the basic stochastic approxi-
mation algorithm with constant step size

Γ̂n = PrMΓ
(Γ̂n−1 − αgn), (4)

where PrMΓ
(·) is the projection operation to the interval MΓ:

PrMΓ
(x) =

⎧
⎪⎨
⎪⎩

Γmin, x < Γmin

Γmax, x > Γmax

x otherwise;

• compute current estimates of object coordinates

P̂ (1)
n =

p
(1)
n

Γ̂n

, P̂ (2)
n =

p
(2)
n

Γ̂n

, P̂ (3)
n =

1

Γ̂n

. (5)

Note that the Eq. (3) for the pseudogradient is a development of the motivating idea from the

previous section, but instead of Δn
P

(1)
n

P
(3)
n

we consider the product of Δn by the difference of two

sequential observations, which lets us also obtain inverse depth estimates with smaller variance.
This approach is similar to RSAA type algorithms with two observations [21, 23].
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5. MAIN RESULT

The following theorem establishes the bounds for estimation errors with the proposed algorithm.

Theorem. Suppose that assumptions 1–5 are satisfied. We denote

b = (1 + α+ α2)Γ2
max(D3 + δ3),

k = (1 + α2)Γ4
max(D

2
3 + σ2

3) + 2α2Γ2
max + α2

(
σ2
2

σ4
1

(2H1 + 2cd)
2 +

σ4
4

σ4
1

Γ2
max

)
.

If 0 < α < 1 then

lim
n→∞

√
E‖Γ̂n − Γn‖2 � L =

b+
√
b2 + α(1− α)k

α (1− α)
(6)

and
lim
n→∞E|P̂ (i)

n − P (i)
n | � Γ−2

minHiL+ Γ−1
minci, i = 1, 2. (7)

Proof of theorem is given in the Appendix.

6. EXPERIMENTAL RESULTS

6.1. Experiment Settings

In our modeling, we considered the case of a camera watching a single point. The discretization
period was set to one. As above, Cn denotes the camera position at time moment n. To simplify the
experiment, we did not consider the case of camera rotating around its axis; instead, we assumed
that the camera moves with some velocity V C

n which is known but not controlled by the user (for
instance, it could be the speed of the car where the camera is installed). Under these conditions,
the camera location change dynamics is given by equation Cn = Cn−1 + V C

n .

The camera watches over an object with coordinates Pn = (P
(1)
n , P

(2)
n , P

(3)
n )T that moves with

velocity V P
n :

Pn = Pn−1 − V C
n + V P

n .

Observation error vn is uniform, has zero expectation, and takes values in both coordinates
with equal probabilities in the range of [−0.001; 0.001]. Note that the admissible level of noise is
important: if the observed object shifts by vector (1; 0; 0)T in the camera plane it will correspond
to a shift of size ( 1

10 ; 0; 0)
T (judging by projection equations), and the above error may constitute

up to 1% of the observed distance.

To apply the algorithm above to current camera location at every time moment, we add a test
randomized disturbance Δn:

Cn = Cn−1 + V C
n −Δn,

where {Δn} is a sequence of realizations of a random vector on the sphere of radius 0.1:

Δn = 0.1× (sin(Γn) cos(φn), sin(Γn) sin(φn), cos(Γn))
T.

Here {φn} and {Γn} are sequences of independent random variables that are uniformly distributed
on intervals [0, 2π] and [0, π] respectively. We chose the sphere’s radius to be 0.1 based on the
assumptions on the scale of other objects in the system and the observation noise level to be such
that the observed distance between object projections at different moments of time would be no less
than the value of the possible noise. In practice, we have to start from similar considerations, taking
into account physical restrictions of the device that will be implementing the camera’s motion.

In all experiments, the initial camera position is set to be zero C0 = (0; 0; 0)T, and the initial
object position is P0 = (0; 0; 10)T.
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6.2. Modeling Results

In the simplest case we considered the case when V C
n = 0 and V P

n = 0. We tested various kinds of
noise in the initial approximation. In case when the initial error is small the algorithm successfully
tracks the true value of the inverse depth (see Fig. 3). If, on the other hand, the error in the initial

Fig. 3. Sample true trajectories (solid line) and algorithm estimates for the simple case without point movement
and small error in the initial approximation.

Fig. 4. Conditions similar to Fig. 3 but with large initial approximation error.

Fig. 5. Sample trajectories in case of a moving point.
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Fig. 6. Confidence intervals with deviation 3σ.

Fig. 7. Mean error for the estimate P (1)/P (3).

approximation is large then the algorithm on first iterations converges to the true trajectory and
then keeps tracking it (Fig. 4). We used the following parameters: Γ̂0 = 1.1; α = 0.1.

The most interesting testing scenario is the case when both the point and the camera move in
the same direction (Fig. 5). Under these conditions, standard computer vision techniques do not
help in determining the object location. We have considered the case of V C

n = V P
n = (0.5; 0; 0)T .

Figure 6 shows the mean error of estimating the inverse depth together with its variance computed
over 1000 algorithm test runs in identical conditions (α = 0.001). Figure 7 shows the graph of
error estimates for P (1)/P (3); the graph illustrates the fact that the algorithm also successfully
handles the problem of estimating this variable. Initial approximation in the tests was chosen to
be Γ̂0 = 0.2. Analyzing the graphs, we see that even in such a hard case the algorithm can produce
estimates converging to the true motion trajectory of the point. We chose parameter α in different
cases depending on the character of the object’s motion in such a way that the resulting accuracy

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 2 2016
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would be approximately the same, and convergence would be sufficiently fast. Therefore, in case
of a static object we chose a large α (to improve the convergence rate), and in case of a moving
object α was small (to ensure the desired accuracy).

6.3. Real Experiment

For the purposes of illustration, we also performed an experiment on real data. Testing in
real life conditions is complicated by the lack of exact information regarding the true location of
the moving object and regarding external camera parameters. To get the parameters, we used
a set of static markers with known geometry (Fig. 8). These markers are convenient because

Fig. 8. A base of markers used to tie camera and object location.

Fig. 9. A frame with a marker representing a moving object.
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Fig. 10. Trajectories of depth estimates for the point (dashed line) and its true values (solid line) in case when
the observed object is moving.

Fig. 11. Error in the point depth estimates in case of a static observed object.

they can be automatically detected with sufficient accuracy on camera images [28]. The location
of markers with respect to each other was reconstructed with reconstruction methods by several
photos [3], with a high-definition camera (3648 × 2736 pixels) and a tripod to provide sharper
images and, accordingly, more exact estimates for the markers’ positions. The base of markers can
be represented as a set of points in the three-dimensional space (angles of white regions inside a
marker) whose coordinates are known. When we have a set of three-dimensional points and a set of
their projections, data on the location and orientation of the camera with which these projections
were obtained can be computed by standard reconstruction methods [3]. In our experiment, the

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 2 2016
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observed object was also represented as a marker (Fig. 9). We reconstructed the true object location
with reconstruction methods under the assumption that the marker is flat. Photos were taken in
daylight, with a camera shooting with frequency 30 Hz and resolution 1280 × 720 pixels. Two
persons participated in the experiment: one held the camera in his hands and performed periodic
oscillations in various directions to simulate random motion with zero expectation. The observed
object was controlled by the second person positioned at a distance of approximately 1.5 meters
from the camera. To estimate the position, the algorithm chose a single point on the marker and
tracked its projection not with the marker detector but with optical flow algorithms [29] in order
to better approximate real life conditions. We considered two cases: a static object and a moving
object. Resulting estimates produced by the algorithm are shown on Figs. 10 and 11, which show
that the algorithm’s estimates gradually converge to true values, and in case of a motionless object
convergence is slightly faster. Our experiments show that the algorithm can be applied in real life
conditions and that our assumptions regarding the known motion of the camera and its internal
parameters do make sense as well.

7. CONCLUSION

In this work, we presented a new approach to estimating the position of a moving object observed
by a single camera. The algorithm is based on randomizing the camera location that lets us
reconstruct the object’s trajectory even in cases when standard approaches cannot be applied at
all. In practice, such a system can be implemented with special devices that control camera position
or, if either the camera itself or the object where it is installed are moving with a certain element
of randomness, this motion can be reconstructed with the help of static objects in the scene [30],
and then we can applied the proposed new estimation algorithm.

In this work, we have shown the theoretical consistency of algorithm estimates and shown the
results of its testing under various conditions. Numerical modeling indicates that the method
successfully handles the problem of tracking the object’s trajectory in all considered scenarios. In
future work, to develop the proposed new method we plan to apply to the resulting estimates an
approach based on the Kalman filter [31, 32] in order to predict object velocity more accurately
judging by given assumptions on the character of its motion.
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APPENDIX

Proof of Theorem. In the proof we will use the following auxiliary Lemma 1 from [20].

Lemma 1 [20]. If en > 0, α,m > 0, αm < 1, b, k � 0,

en � (1− αm) en−1 + 2 b
√
en−1 + k, n = 1, 2, . . . , (A.1)

then for every ε > 0 there exists N such that

∀n > N en �
(
b+

√
b2 + αmk

αm

)2

+ ε.
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Proof of Lemma 1 can be found in [20] or [21].

We denote νn = Γ̂n − Γn, yn = Δ
(1)
n

σ2
1
(p

(1)
n − p

(1)
n−1), where En{·} is the conditional expectation

with respect to the entire previous history of observations up until time moment n− 1.

Due to algorithm (4), with the projection property the conditional expectation of the error at
time moment n can be represented as follows:

En

{
ν2n

}
� En

{
(Γ̂n−1 − Γn−1 + Γn−1 − Γn − αgn)

2
}

= ν2n−1 + En

{
(Γn−1 − Γn)

2
}
+ 2νn−1En {Γn−1 − Γn}

−2ανn−1En {gn} − 2αEn

{
gn(Γn−1 − Γn) + α2g2n

}
. (A.2)

Let us sequentially estimate all terms (except the first) in the right-hand side of inequality (A.2).

Since the drift speed is bounded and the test disturbance is centered and bounded in mean
squares, we have

En{(Γn−1 − Γn)
2} = En

⎧
⎨
⎩
(P

(3)
n − P

(3)
n−1)

2

(P
(3)
n−1P

(3)
n )2

⎫
⎬
⎭ � Γ4

max(D
2
3 + σ2

3), (A.3)

2νn−1En{Γn−1 − Γn} =
2

P
(3)
n−1

En

⎧⎨
⎩
P

(3)
n−1 − P

(3)
n

P
(3)
n

⎫⎬
⎭ νn−1 � 2Γ2

max(D3 + δ3)|νn−1|. (A.4)

Due to the above notation, we can represent the values of yn as follows:

yn =
Δ

(1)
n

σ2
1

⎛
⎝P

(1)
n−1 +Δ

(1)
n + ξ

(1)
n

P
(3)
n−1 +Δ

(3)
n + ξ

(3)
n

− P
(1)
n−1

P
(3)
n−1

+ v(1)n − v
(1)
n−1

⎞
⎠ .

Since components of the test disturbance are centered, mutually independent and independent of

ξ
(1)
n , ξ

(3)
n , v

(1)
n , for the conditional expectation En{yn} we find that

En{yn} = En

{
Δ

(1)
n

σ2
1

}
En

⎧
⎨
⎩

P
(1)
n−1 + ξ

(1)
n

P
(3)
n−1 +Δ

(3)
n + ξ

(3)
n

− P
(1)
n−1

P
(3)
n−1

+ v(1)n − v
(1)
n−1

⎫
⎬
⎭

+En

{
(Δ

(1)
n )2

σ2
1

}
En

⎧⎨
⎩

1

P
(3)
n−1 +Δ

(3)
n + ξ

(3)
n

⎫⎬
⎭

= 0×En

⎧
⎨
⎩

P
(1)
n−1 + ξ

(1)
n

P
(3)
n−1 +Δ

(3)
n + ξ

(3)
n

− P
(1)
n−1

P
(3)
n−1

+ v(1)n − v
(1)
n−1

⎫
⎬
⎭+ En{Γn} = En{Γn}.

Consequently, taking into account (A.4) we get

−2ανn−1En{gn} = −2ανn−1(Γ̂n−1 −En{Γn}) (A.5)

= −2ανn−1(Γ̂n−1 − Γn−1 + Γn−1 − En{Γn})
� −2αν2n−1 + 2αΓ2

max(D3 + δ3)|νn−1|.
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For the next term in the right-hand side of inequality (A.2), we sequentially derive

−2αEn{gn(Γn−1 − Γn)} = −2αEn{(Γ̂n−1 − yn)(Γn−1 − Γn)}
= −2αΓn−1Γ̂n−1 − 2αEn{ynΓn}+ 2αΓ̂n−1En{Γn}+ 2αΓn−1En{Γn}

= αν2n−1 + 2αEn{Γ2
n} − 2αEn{ynΓn} − αEn{(Γ̂n−1 − Γn)

2}
− αEn{(Γn−1 − Γn)

2} � αν2n−1 + 2αΓ2
max, (A.6)

since En{ynΓn} = En{Γ2
n} > 0 because components of the test disturbance are centered, mutually

independent and independent of ξ
(1)
n , ξ

(3)
n , v

(1)
n .

For the last term in the right-hand side of inequality (A.2), taking into account (A.3) and (A.4)
we get

α2En{g2n} = α2En

{
(Γ̂n−1 − Γn−1 + Γn−1 − yn)

2
}

= α2ν2n−1 + 2α2νn−1(Γn−1 − En{Γn})
+ α2

(
Γ2
n−1 − 2Γn−1En{Γn}+ En{Γ2

n}+ En{y2n − Γ2
n}
)

� α2ν2n−1 + 2α2Γ2
max(D3 + δ3)|νn−1|

+ α2Γ4
max(D

2
3 + σ2

3) + α2

(
σ2
2

σ4
1

(2H1 + 2cd)
2 +

σ4
4

σ4
1

Γ2
max

)
, (A.7)

and since components of the test disturbance are centered, mutually independent, and independent

of ξ
(1)
n , ξ

(3)
n , v

(1)
n we get

En

{
y2n − Γ2

n

}
< En

{
y2n

}

= En

⎧
⎪⎨
⎪⎩

⎛
⎝Δ

(1)
n

σ2
1

⎛
⎝P

(1)
n−1 + ξ

(1)
n

P
(3)
n

− P
(1)
n−1

P
(3)
n−1

+ v(1)n − v
(1)
n−1

⎞
⎠
⎞
⎠

2
⎫
⎪⎬
⎪⎭

+ En

⎧
⎨
⎩

(
(Δ

(1)
n )2

σ2
1P

(3)
n

)2
⎫
⎬
⎭ � σ2

2

σ4
1

(2H1 + 2cd)
2 +

σ4
4

σ4
1

Γ2
max.

As a result, substituting into (A.2) the resulting estimates (A.3)–(A.7) we conclude that

En{ν2n} � (1− α+ α2)ν2n−1 + 2(1 + α+ α2)Γ2
max(D3 + δ3)|νn−1|

+ (1 + α2)Γ4
max(D

2
3 + σ2

3) + αΓ2
max

(
2 + α

(
4Γ−1

min + 2D1 + 2c2d +
σ4
4

σ4
1

))

= (1− α(1 − 2α))ν2n−1 + 2 b |νn−1|+ k. (A.8)

Taking unconditional expectation of both sides in (A.8), we see that all conditions Lemma 1
hold for m = 1− α, and en = Eν2n since (E|νn|)2 � Eν2n. Applying Lemma 1, we get formula (6),
the first item of theorem.
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Formulas (7) can be derived from estimates on the differences

E|P̂ (i)
n − P (i)

n | = E

∣∣∣∣∣
p
(i)
n

Γ̂n

− (p(i)n − v(i)n )P (3)
n

∣∣∣∣∣

� E

∣∣∣∣∣p
(i)
n

(
1

Γ̂n

− 1

Γn

) ∣∣∣∣∣+ |v(i)n P (3)
n |

� Γ−2
minHiE|νn|+ Γ−1

minci, i = 1, 2.

This concludes the proof of theorem.
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