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In the presence of the competition for network resources, network providers
may experience some difficulty in providing throughput as specified by
service-level agreements. Moreover, fulfilling a quality of service (QoS)
agreement for a specific application may affect QoS agreements for other
applications served by the same network provider. We describe a model to
estimate QoS for single and multiple applications and offer a method for a
network provider to choose a set of applications with a guaranteed QoS in
order to maximize profit with respect to limited network resources. We
describe and compare four suboptimal algorithms which can be used when
optimal methods cannot be employed. © 2011 Alcatel-Lucent.

802.16m, channel bandwidth is shared between appli-

cations. The activity of one application may affect the

quality of service (QoS) of another one. If we con-

sider the provider network as a tree, as illustrated in

Figure 1, it becomes clear that network contention

effects can arise at every internal node as a result of

heavy traffic from its children nodes. Such a situation

can present a serious problem for service quality, for

example, when a voice call, streaming audio, or

streaming video application is affected. A possible

solution to avoid this situation is to control the band-

width available for each application, so one applica-

tion cannot influence the QoS of another.

Related Work
Network providers have two well-developed

approaches to QoS guarantees: integrated services

(IntServ) [8] and differentiated services (DiffServ) 

[4, 7]. In the first approach, users can specify different

contracts for their own traffic: contracts for microflows

Introduction
A network provider often acts as a middleman

between end users and application providers. For

example, end users often employ a basic service (such

as Web access) from a network provider in order to

gain access to services from an application provider.

One drawback of this scheme is that the user must

pay both the application provider and the network

provider; a clearer scheme for the user is to pay once

per subscription per application. Based on this idea,

we envision a future where network providers begin

to collaborate more closely with application providers

in order to build a single application marketplace (like

the Apple App Store*) for end users.

High Capacity Networks
High capacity wireless networks, such as fourth

generation (4G) networks, enable a broad range of

applications, like high-definition television (HDTV)

or HD video calls, which were barely possible in ear-

lier networks. In modern network standards like IEEE
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(independent contracts for small portions of traffic) or

contracts for virtual private network (VPN)–like tun-

nels with limited bandwidth. Both types of contracts

can be seen as unrealistic because of the high varia-

bility in the traffic for individual connections and for

tunnels [5]. The DiffServ approach proposed a discrete

set of bandwidth values, called QoS classes, which

would provide users with the ability to dynamically

adjust their QoS level [7]. However, from the network

provider’s perspective, the scheme is somewhat unpre-

dictable, and users, meanwhile, have demonstrated

some reluctance to switch QoS and pay a different

price for the same service [4]. In this paper, we view

the problem of QoS in terms of satisfying a given band-

width requirement for a given window within an

interval of time. For example, QoS can be defined on

a per-hour basis for each of the 24 hours in a day.

The pricing of services is another important ques-

tion. Research has mostly focused on congestion-

based pricing, where the price for transmitting or

receiving a chunk of data rises when the network

becomes congested. However, as noted in [5], if neces-

sary, a network can be adjusted for higher capacity, so

congestion should be the exception, not the norm.

The price for a service should justify the network costs

plus a reasonable profit on a long term basis [1].

Therefore, pricing based on individual bids for packets,

as was proposed in [3], seems highly unreliable and

an uncomfortable prospect for industry practitioners.

In this paper, we adopt a model where revenue for

applications with QoS guarantees is fixed and known.

Panel 1. Abbreviations, Acronyms, and Terms 

4G—Fourth generation
ABD—Application bandwidth demand
DiffServ—Differentiated services
HDTV—High-definition television
IntServ—Integrated services
QoS—Quality of service
VPN—Virtual private network
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MS—Mobile station
NSC—Network switching center
NSS—Network switching subsystem

Figure 1.
Provider network.
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In a service level agreement, a bid for a specific

application involves a pair of application bandwidth

demands (ABDs) and a fixed revenue value. This bid

can be proposed by an application provider or created

jointly with a network provider and should rely on user

demand projections and business considerations. In [5],

the author conducted experiments which reveal that

while individual user traffic is indeterminate, there are

certain statistical patterns of group network behavior

which repeat every 24 hours. We believe that repeated

patterns exist for every application, because we assume

the existence of significant numbers of application users.

Problem Setting
Traffic is bounded by the physical capabilities of

the network. The problem then is managing traffic

with maximal efficiency. We consider profit as a mea-

sure of efficiency, and because the cost of network

operations does not depend on actual network use,

we tackle the problem of profit maximization for the

network provider.

Let there be one network and several applications

A � {a1 . . . aN} which can be installed. User demand

for certain applications can be assumed to be either

fixed or varying in time. The first case is easier, but we

believe the second case is more natural for high-level

applications such as social networking, torrent, or

video applications. The application bandwidth demand

ABD depends on the user demand and the character-

istics of the application. Let us define ABD as D ↓ a(t)

for application a. We assume that ABD is a continuous

function defined on some closed interval [0,T] repre-

senting an operating time frame such as a day, month,

or year. We consider that customer needs for a specific

application have been met, and thus quality of ser-

vice guarantees satisfied, if the network provider can

satisfy ABD.

For the network provider, the profitability of each

application is defined by the D function, which maps

directly to the portion of the application price the net-

work provider receives if it provides the QoS level it

has been contracted to provide. The network

provider’s goal therefore is to choose a subset of all

applications AQoS 8 A with a guaranteed QoS that will

maximize accumulated profit, P:

P � a
aiHAQos

Pai

The bandwidth restriction at any moment t for a

subset of chosen applications AQoS is the network

capacity, C:

5t � a
aiHAQos

Dai(t) � C.

Figure 2 provides an example of distribution D

for different applications. The following section offers

a solution to this problem.

Solution
The problem defined above can be reduced to the

multidimensional knapsack problem [2] and thus is

NP-hard. In the interest of space, this paper does not

include a proof for this fact. Because the time com-

plexity for an optimal algorithm is exponential in a

number of applications, we offer several suboptimal

algorithms, detailed below, and compare the quality of

the solutions:

• Greedy profit

• Greedy mean profit

• Greedy max profit

• Probabilistic

Greedy algorithms choose applications of the

highest rank by some real-valued ranking function.

The greedy profit algorithm ranks applications with
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higher profit higher overall regardless of the amount

of bandwidth used:

R(ai) � P(ai).

In the greedy mean profit algorithm, the ranking

function is profit divided by the mean amount of

bandwidth used:

Meanwhile, the greedy max profit algorithm uses

the maximum instead of an integral in its ranking

function:

.

Finally, the probabilistic algorithm chooses appli-

cations randomly with the probabilities proportional

to function Rmean(ai). The random process is repeated

a number of times and the optimal solution of all itera-

tions is chosen.

Experiments
We conducted an experiment for each of the four

algorithms described in the previous section. In order

to simulate real conditions, we considered three dif-

ferent types of applications, as shown in Figure 2,

namely: a work type application with peak usage in the

middle of the day, a home type application with peak

usage in the morning or evening, and an instant appli-

cation with constant bandwidth demand. The parame-

ters were generated uniformly in the appropriate

range of values. The price was generated in the range

1 . . . 50 price units, the network capacity was fixed to

100 bandwidth units, and the number of applications

varied in the range of 3 . . . 36.

The results of every execution by every algorithm

were divided by the optimal profit value. Thus in

Figure 3 we demonstrate the ratio of the algorithm

result to the optimal result. The probabilistic algo-

rithm produced poor results; still we believe that it

can be sufficiently improved by using more complex

probabilistic schemas. The greedy profit algorithm

demonstrated adequate results only for a relatively

small number of applications; this is because it does

Rmax(ai) �
P(ai)

max
t�[0,T]

Dai(t)

Rmean(ai) �
P(ai)P .T

�
T

0

Dai(t)

not take ABD into account. Both the greedy mean

profit and greedy max profit algorithms demonstrated

good results. Still, we predict that since the greedy

mean profit is more robust, it is likely to produce bet-

ter results in the presence of a higher variety of appli-

cations.

Another interesting criterion for an algorithm is

its overall robustness. We consider an algorithm A

more robust than algorithm B, if after a small change

in the application bandwidth demand D of one appli-

cation, the set AQoS(A) is changed less than the set

AQoS(B). The change of application set AQoS can be mea-

sured with respect to the size of the symmetric dif-

ference in the sets. Assuming that the bandwidth

demand D of an application increases for � at every

moment in time, we considered the change AQoS for

every algorithm above. Greedy profit is the most

robust algorithm since its result, AQoS, does not depend

on D. The probabilistic algorithm is the least robust

since its result may change even if its input remains

unchanged. As for the greedy max profit and greedy

mean profit algorithms, relative robustness cannot be

strictly identified and depends on the bandwidth

demand function D. However, in some special cases,

such as when a family of functions D can be presented

as a � f0 � b, the greedy max profit algorithm is more

robust than the greedy mean profit algorithm.
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Conclusions
This paper has described situations in which a

next-generation network provider could potentially

fail to guarantee quality of service at a level to which

it had contracted. In order to tackle the problem as

described, we offer to limit the set of applications with

guaranteed QoS and describe a method for choosing

such a set in order to maximize network provider

profits while satisfying network constraints. To solve

the problem we considered four different suboptimal

algorithms, which were compared for the simulated

set of applications. The greedy mean profit and greedy

max profit algorithms demonstrated the best results

and most robust behavior.

In the future, application bandwidth demand esti-

mation methods should also be presented and ana-

lyzed. The probabilistic nature of traffic can be

explored and integrated into the choice of application

model, as is done in [6] with overbooking methods.

The dependency of user demand on application price

may also be introduced, to explain pricing policies

used by network providers to control demand and

congestion. Another possible generalization of the

model can be in prioritization of applications, as 

the current model classifies them only as accepted or

declined. There are no significant difficulties in con-

sidering more than two application classes.

*Trademarks
App Store is a trademark of Apple, Inc.
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