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Abstract. The Perspective-n-Point (PnP) problem seeks to estimate
the pose of a calibrated camera from n 3D-to-2D point correspondences.
There are situations, though, where PnP solutions are prone to fail be-
cause feature point correspondences cannot be reliably estimated (e.g.
scenes with repetitive patterns or with low texture). In such scenarios,
one can still exploit alternative geometric entities, such as lines, yielding
the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, exist-
ing PnL solutions are not as accurate and efficient as their point-based
counterparts. In this paper we propose a novel approach to introduce
3D-to-2D line correspondences into a PnP formulation, allowing to si-
multaneously process points and lines. For this purpose we introduce
an algebraic line error that can be formulated as linear constraints on
the line endpoints, even when these are not directly observable. These
constraints can then be naturally integrated within the linear formula-
tions of two state-of-the-art point-based algorithms, the OPnP [45] and
the EPnP [24], allowing them to indistinctly handle points, lines, or a
combination of them. Exhaustive experiments show that the proposed
formulation brings remarkable boost in performance compared to only
point or only line based solutions, with a negligible computational over-
head compared to the original OPnP and EPnP.

1 Introduction

The objective of the Perspective-n-Point problem (PnP) is to estimate the pose of
a calibrated camera from n known 3D-to-2D point correspondences [34]. Early
approaches were focused on solving the problem for the minimal cases with
n = {3, 4, 5} [7, 11, 12, 15, 19, 42]. The proliferation of feature point detectors [16,
36] and descriptors [3, 26, 29, 37, 40] able to consistently retrieve many feature
points per image, brought a series of new PnP algorithms that could efficiently
handle arbitrarily large sets of points [9, 13, 18, 24, 25, 27, 30, 38, 45]. Amongst
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Fig. 1. Pose estimation results of OPnPL (left) and OPnP (right) in a scenario with
a lack of reliable feature points. Blue points and solid line segments are detected in
the image, and green dashed line segments are the model reference lines reprojected
using the estimated pose. White lines are manually chosen on the 3D model to sketch
its structure and projected onto the image to deem the quality of the estimated pose.
Note also the shift along the line direction between the detected and the model lines.
This issue needs to be handled in practice, where the reference lines in the model may
only be partially detected on the image (due to partial occlusions). Images from [41].

them, it is worth highlighting the EPnP [24], the first of these ‘efficient’ PnP
solutions, and the OPnP [45], one of the most recent and accurate alternatives.

However, there are situations were PnP algorithms are likely to perform
poorly because the presence of repetitive patterns or a lack of texture makes it
difficult to reliably estimate and match feature points. This occurs, for instance,
in man-made structures such as that shown in Fig. 1. In these cases, though,
one can still rely on other geometric primitives like straight lines, and compute
camera pose using the so-called Perspective-n-Line (PnL) algorithms. Unfortu-
nately, existing solutions are not yet as accurate as the point based approaches.
The main problem to tackle in the PnL is that even when one may know 3D-
to-2D line correspondences, there still can exist a shift of the lines along their
direction. Additionally, the line may only be partially observed due to occlusions
or misdetections (see again Fig. 1).

In this paper, we propose a formulation of the PnL problem which is robust
to partial and shifted line observations. At the core of our approach lies a param-
eterization of the algebraic line segment reprojection error, that is linear on the
segment endpoints. This parameterization, in turn, can be naturally integrated
within the formulation of the original EPnP and OPnP algorithms, hence, allow-
ing these PnP methods to leverage information about line correspondences with
an almost negligible extra computation. We denote these joint line and point for-
mulations as EPnPL and OPnPL, and through an exhaustive experimentation,
show that they consistently improve the point only, and line only formulations.

2 Related Work

Most camera pose estimation algorithms are based on either point or line corre-
spondences. Only a few works exploit lines’ and points’ projections simultane-
ously. We next review the main related work in each of these categories.
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Pose from Points (PnP). The most standard approach for pose estimation
considers 3D-to-2D point correspondences. Early PnP approaches addressed the
minimal cases, with solutions for the P3P [6, 12, 14, 21], P4P [4, 11] and n =
{4, 5} [42]. These solutions, however, were by construction unable to handle
larger amounts of points, or if they could, they were computationally demanding.
Arbitrary number of points can be handled by the Direct Linear Transformation
(DLT) [1], which however, estimates the full projection matrix without exploiting
the fact that the internal parameters of the camera are known. This knowledge is
shown to improve the pose estimation in more recent PnP approaches focused on
building efficient solutions for the overconstrained case [2, 10, 18, 20, 24, 32, 45].
Amongst these, the EPnP [24] was the first O(n) solution. Its main idea was to
represent the 3D point coordinates as a linear combination of four control points,
which became the only unknowns of the problem, independently of the total
number of 3D coordinates. These control points were then retrieved using simple
linearization techniques. This linearization has been subsequently substituted by
polynomial solvers in the Robust PnP (RPnP) [25], the Direct Least Squares
DLS [18], and the Optimal PnP (OPnP) [45], the most accurate of all PnP
solutions. OPnP, draws inspiration on the DLS, but by-passes a degeneracy
singularity of the DLS on the rotation by using a quaternion parameterization
that allows to directly estimate the pose using a Gröbner basis solver.

Pose from Lines (PnL). The number of PnL algorithms is considerably smaller
than the point-based ones. Back in the 90’s, closed-form approaches for the mini-
mal case with 3 line correspondences were proposed [5, 7], together with theoret-
ical studies about the multiple solutions this problem could have [31]. The DLT
was shown to be applicable to line representations in [17], although again, with
poorer results than algorithms that explicitly exploited the knowledge of the
internal parameters of the camera, like [2], also applied to lines. [28] estimates
the camera rotation matrix by solving a polynomial system of equations using
an eigendecomposition of a so-called multiplication matrix. This method has
been recently extended to full pose estimation (rotation+translation) in [33], by
combining Pluecker 3D line parameterization with a DLT-like estimation algo-
rithm. [44] combines the former P3L algorithms to compute pose by optimizing
a cost function built from line triplets. Finally, [23] shows promising results by
formulating the problem in terms of a system of symmetric polynomials.

Pose from Points and Lines (PnPL). There is a very limited number
of approaches that can simultaneously process point and line correspondences.
The first of these approaches is the aforementioned DLT, initially used for point
based pose estimation [1], and later extended to lines [17]. Both formulations can
be integrated into the same framework. [8] also claims a methodology that can
potentially handle points and lines. Unfortunately, this is not theoretically shown
neither demonstrated in practice. Finally, there are a few works that tackle the
camera pose estimation from minimal number of points and lines. [35] proposes
solutions for the P3L, P2L1P, P1L2P and P3L. And most recently, [22] solves
for pose and focal length from points, directions and points with directions.
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3 Our Approach to Pose from Points and Lines

Our approach to pose estimation holds on a new formulation of the straight line
projection error, which allows incorporating information about the matched line
segments into the PnP method, and in particular, into the EPnP and OPnP.
This will result in two new algorithms for pose estimation from point and line
correspondences, denoted as EPnPL and OPnPL.

3.1 Problem Formulation

We are given n correspondences between 3D reference lines and 2D segment
projections. 3D lines are represented by 3D endpoints {Pi,Qi} and 2D detected
segments by 2D endpoints {pid,qid}, for i = 1, . . . , n. The camera is assumed to
be calibrated, being K the matrix of internal parameters. Our goal is to estimate
the rotation R and translation t that align the camera and the world coordinate
frames. It is worth pointing out that 2D line segment endpoints pid,q

i
d do not

necessarily correspond to the projections pi,qi of the 3D line endpoints Pi,Qi.
They are, instead, projections of some points Pi

d,Q
i
d lying on the same 3D line

as Pi,Qi (see Fig. 2-left). This reflects the fact that in practice 3D reference
lines may not be fully detected in the image or they can be partially occluded,
precluding the use of point-based PnP algorithms.

3.2 General Definition of Line Segment Projection Error

Let the vector θ denote the pose parameters (R and t) of the calibrated cam-
era. In the PnP formulation, we minimize the reprojection error of a projection
function x̃ = π(θ,X), where x̃ ∈ R3 are the homogeneous coordinates of the
3D point X projected on the camera. Since we assume the calibration matrix K

is known, we can pre-multiply the homogeneous image plane coordinates of the
detected lines and points by K−1 prior to solving the PnPL problem. In the rest
of this document, we will therefore assume that the homogeneous coordinates
are normalized and that K is a identity matrix.

In order to extend the point-based formulation to handle line segments, we
need to formalize the reprojection error for lines. For that, let p̃id, q̃

i
d ∈ R3 be the

homogeneous coordinates of the detected 2D endpoints pid,q
i
d for the i-th line

segment. We represent this projected segment by its normalized line coefficients:

l̂i = p̃id × q̃id, li =
l̂i

|̂li|
∈ R3. (1)

We then define the algebraic point-line error Epl for a 3D point Pi to a detected
line segment li as distance between the line li and the 2D projection of Pi:

Epl(θ,P
i, li) = (li)>π(θ,Pi). (2)
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Fig. 2. Left: Notation and problem formulation. Given a set of 3D-to-2D line cor-
respondences, we seek to estimate the pose θ that aligns the camera and the world
coordinate systems. 3D lines are represented by 3D endpoint pairs (P,Q). 2D corre-
sponding segments are represented by the detected endpoints (pd,qd) in the image
plane. Note that the 3D-to-2D line correspondence does not imply a correspondence of
the enpdoints, preventing the use of a standard PnP algorithm. Right: Correction of
3D line segments to put in correspondence the projection of the line endpoints (P,Q)
with the detected segment endpoints (pd,qd). Top: before correction. Bottom: after
correction. Note how the projections (p,q) have been shifted along the line.

We further define the algebraic line segment error El as the sum of squares of
the two point-line errors for the 3D line segment endpoints:

El(θ,P
i,Qi, li) = E2

pl(θ,P
i, li) + E2

pl(θ,Q
i, li). (3)

The overall line segment error Elines for the whole image is the accumulated
algebraic line segment error over all the matched line segments:

Elines(θ, {Pi}, {Qi}, {li}) =
∑
i

El(θ,P
i,Qi, li). (4)

Note that this error does not explicitly use the detected line segment endpoints,
depending only on the line coefficients li. However, we seek to approximate with
it the distance between the detected endpoints and the line projected from the
model onto the image plane. This approximation may incur in gross errors in
situations such as the one depicted in Fig.2-top-right. In this scenario, the true
projected endpoints (p,q) are relatively far from the 2D detected endpoints
(pd,qd), and the algebraic point-line errors d1 and d4 are much larger than
the gold standard errors d2, d3. This leads to preferred minimization of the
algebraic error for line matches where the detected and projected endpoints are
further away. To handle this problem we considered a two-step approach. We first
estimate the initial camera pose with the given 3D model. We then recompute the
position of the end-points onto the 3D model such that they reduce the distances
between the projected and detected endpoints. Using this updated 3D model,
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we compute the final estimate of the camera pose. Fig.2-bottom-right shows how
the ground truth projected end-points have changed their position after having
updated the 3D model. We next describe in more detail this correction process.

3.3 Putting 3D and 2D Line Endpoints in Correspondence

Let’s consider d be the length of the detected line segment and the notation
detailed in Fig. 2-right. After the first iteration of the complete PnPL algorithm
(see Sections 3.4 and 3.5) we obtain an initial estimate of the camera pose. We
then shift the endpoints of every line segment in the camera coordinate frame so
that the length of the projected line segment matches the length of the detected
segments, and the sum of distances between corresponding endpoints is minimal.

More specifically, given an estimate for the pose R, t, we compute p,q and
the unit line direction vector v along the projected line l̂. We then shift the
position of p and q along this line, such that they become as close as possible
from pd,qd, and separated by a distance d. This can be expressed with the
following two equations, function of a shifting parameter γ:

pd = p + γv qd = p + (γ + d)v (5)

which yields that γ = v>
(

1
2 (pd + qd)− p

)
− d

2 . Given γ we can then take the
right hand side of (5) as the new projections of p,q, and backproject the position
of the new endpoints P,Q in the camera and world coordinate frames.

To backproject a point from the image plane to a 3D line, we compute the
intersection of the line of sight of the point with the 3D line as follows:

λx̃ = αX + βD, (6)

where x̃ are the point’s projection homogeneous coordinates, X is the 3D point
belonging to the line and D is the 3D line direction. Both X and D are ex-
pressed w.r.t. the camera coordinate frame. From this equation we see that
s = [−λ, α, β]> is orthogonal to the vectors [X(j), D(j), −x̃(j)]>, j = 1, 2,
where X(j) corresponds to the j-th component of the vector X. We employ the
cross product operation to solve for s and then compute the 3D point position
as X + β

αD. This procedure turns to be very fast.

3.4 EPnPL

We next describe a necessary modification to the EPnP algorithm to simultane-
ously consider np point and nl line correspondences.

In the EPnP [24] the projection of a point on the camera plane is written as

πEPnP(θ,P) = K

4∑
j=1

αjC
c
j , (7)

where αj are point-specific coefficients computed from the model and Cc
j for

j = 1, . . . , 4 are the unknown control point coordinates in the camera frame.
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Recall that we are considering normalized homogeneous coordinates, and hence
we can set the calibration matrix K to be the identity matrix. We define our
vector of unknowns as µ = [C>1 , C>2 , C>3 , C>4 ]> and then obtain, using (2), an
expression for the algebraic point-line error in case of EPnP:

Epl, EPnP(θ,Pi, li) =

4∑
j=1

αj(l
i)>Cc

j = (mi
l(P

i))>µ, (8)

for mi
l(P

i) = ([α1, α2, α3, α4]⊗ li)>. The overall error in Eq. 4 then becomes

Elines(θ, {Pi}, {Qi}, {li}) =
∑
i

(
(mi

l(P
i))>µ

)2
+
(
(mi

l(Q
i))>µ

)2
. (9)

Finally, considering both point and lines correspondences, the function to be
minimized by the EPnPL will be

arg min
µ

{
‖Mpµ‖2 + Elines(θ, {Pi}, {Qi}, {li})

}
= arg min

µ

{
‖M̄µ‖2

}
(10)

where M̄ = [M>p , M
>
l ]> ∈ R2(np+nl)×12, Mp ∈ R2np×12 is the matrix of parameters

for the np point correspondences, as in [24], and Ml ∈ R2nl×12 is the matrix cor-
responding to the point-line errors of the nl matched line segments. Equation 10
is finally minimized by following the EPnP methodology.

3.5 OPnPL

In OPnP [45], the camera parameters are represented as R̂ = 1
λ̄
R, t̂ = 1

λ̄
t, where

λ̄ is an average point depth in the camera frame. To deal with points and lines
we define λ̄ as the average depth of the points and line segments’ endpoints.
Similarly, we compute the mean point Q̄, which can be used to write the third
component of t̂:

t̂3 = 1− r̂>3 Q̄, (11)

where r̂3 is the third row of R̂. The projection of a 3D point X onto the image
plane (assuming the calibration matrix K to be the identity) will be:

πOPnP(θ,X) = R̂X + t̂. (12)

As we did for the EPnP, we use this projection into Eq. 2 to compute the
algebraic point-line error.

Following [45], we can use Eq. 11 for t̂3 to compute the algebraic error for all
points Epoints as a function of R̂, t̂1, t̂2:

Epoints(r̂, t̂) = ‖Gpr̂ + Hpt̂12 + kp‖2 , (13)

where r̂ is a vectorized form of R̂, t̂12 = [t̂1 t̂2]>, Gp ∈ R2np×9 and Hp ∈ R2np×2

are matrices built from the projections and 3D model coordinates of the np

points, and kp is a 2np constant vector.
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The overall line segment error Elines as defined in Eq. 4 can be expressed
in the same form as in Eq. 13 with Gl, Hl, kl instead of Gp, Hp, kp, and using
algebraic line segment error (3) with (12) as point-line projection function.

In order to compute the pose, we adapt the cost function of [45] to the
following one with both points and lines terms:

Etot(ρ, t̂) = Epoints(r̂(ρ), t̂) + Elines(r̂(ρ), t̂) , (14)

where we parameterize r̂ with non-unit quaternions vector ρ = [a, b, c, d]>. We
next seek to minimize this function w.r.t. the pose parameters.

Setting the derivative of Etot w.r.t. t̂ to zero, and denoting Gtot = [G>p , G
>
l ]>,

Htot = [H>p , H
>
l ]>, ktot = [k>p , k>l ]> we can write t̂ as a function of r̂:

H>tot(Gtotr̂ + Htott̂ + ktot) = 0 =⇒ t̂ = Pr̂ + u, (15)

for P = −(H>totHtot)
−1(H>totGtot), u = −(H>totHtot)

−1H>totktot.
The derivative of Etot w.r.t. the first quaternion parameter a is:

∂r̂

∂a
G>tot(Gtotr̂ + Htott̂ + ktot) =

∂r̂

∂a
G>tot

(
(Gtot + HtotP)r̂ + Htotu + ktot

)
= 0 , (16)

where in the second step we have used Eq. 15. Three more equations analogous
to (16) constitute a system which the original OPnP uses to design a specific
polynomial solver [45]. In our case we can use exactly the same solver, as the
equations we get for joint point and line matches, have exactly the same form
as when only considering points.

4 Experiments

We evaluate the proposed approach in “points and lines” and “only lines” situa-
tions, nonplanar and planar configurations, and synthetic and real experiments.

4.1 Synthetic Experiments

We will compare our approach against state-of-the-art in two situations: A joint
point-and-line case, and a line-only case. In both scenarios we will consider non-
planar and planar configurations, and will report rotation and translation errors
for increasing amounts of 2D noise and number of correspondences. We will also
study the influence of the amount of shift between the lines in the 3D model,
and the observed segments projected on the image.

In the synthetic experiments we assume a virtual 640× 480 pixels calibrated
camera with focal length of 500. We randomly generate np + 2nl 3D points in
a box with coordinates [−2, 2] × [−2, 2] × [4, 8] in the camera frame, where np

and nl are the number of points and line segments, respectively. We then build
a random rotation matrix; the translation vector is taken to be the mean vector
of all the points, as done in [45]. From the last 2nl generated points, we form nl
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(a) Nonplanar: PnP (np = 6), PnL (nl = 10), PnPL (np = 6, nl = 10 )
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(b) Nonplanar: PnP (np = 10), PnL (nl = 10), PnPL (np = nl = 5 )
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(c) Planar: PnP (np = 6), PnL (nl = 10), PnPL (np = 6, nl = 10 )
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(d) Planar: PnP (np = 10), PnL (nl = 10), PnPL (np = nl = 5 )
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Fig. 3. Pose from point and line correspondences. Accuracy w.r.t. image noise level.

pairs, which will be the 3D reference segments (P and Q in Fig. 2). The np 3D
points and 2nl endpoints are then projected onto the image, and perturbed by
Gaussian noise. For each 3D line we generate two more points on the same line
(Pd and Qd in Fig. 2), by randomly shifting P and Q, and project them onto
the image and corrupt with noise (pd and qd in Fig. 2). In the following, unless
said otherwise, noise standard deviation is set to 1 pixel, the segment length is
set to a uniformly random value within the interval [1.5, 4.5], and the segment
shift is also taken randomly within [−2, 2].

In all quantitative results, we will provide the absolute error (in degrees)
for rotation, and the relative error (%) for translation. All plots are created by
running 500 independent simulations and report the mean and median errors.

Regarding state-of-the-art, we compare against the following PnL algorithms:
RPnL [44], Mirzaei [28] and Pluecker [33]. As for PnP methods we will include
EPnP [24] and OPnP [45]; and the DLT proposed in [17] for the PnPL.Our
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(a) Nonplanar: PnP (np), PnL(nl), PnPL (np, nl)
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(b) Nonplanar: PnP (np), PnL (nl), PnPL (n′
p = n′

l = 0.5np = 0.5nl )
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(c) Planar: PnP (np), PnL(nl), PnPL (np, nl)
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(d) Planar: PnP (np), PnL (nl), PnPL (n′
p = n′

l = 0.5np = 0.5nl )
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Fig. 4. Pose from point and line correspondences. Accuracy w.r.t. increasing number
of point or line correspondences.

two approaches will be denoted as EPnPL and OPnPL. Additionally, we will
also consider the OPnP*, which will take as input both point and line corre-
spondences. However, for the lines we will consider the true correspondences
{Pi,Qi} ↔ {pi,qi} instead of the correspondences {Pi,Qi} ↔ {pid,qid} (see
again Fig. 2), that feed our two approaches and the rest of algorithms. Note that
this is an unrealistic situation, and OPnP* has to be interpreted as a baseline
indicating the best performance one could expect.

Pose from points and lines. We consider point and line correspondences
for two configurations, non-planar and planar. We evaluate the accuracy of the
approaches w.r.t. the image noise in Fig. 3, and w.r.t. an increasing number of
correspondences (either points, lines or points and lines) in Fig. 4. To ensure
fairness between PnP, PnL and PnPL algorithms we analyze two situations:
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(a) Nonplanar: PnL (nl = 10), PnPL (np = 0, nl = 10 )
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(b) Planar: PnL (nl = 10), PnPL (np = 0, nl = 10 )
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Fig. 5. Pose from only line correspondences. Accuracy w.r.t. image noise level.

(a) Different number of constraints. When evaluating accuracy w.r.t. image noise
we consider np = 6 point correspondences for the PnP algorithms (minimum
number required by EPnP), nl = 10 correspondences for the PnL (minimum
number for Pluecker [33]) and the PnPL methods use np = 6 point plus nl = 10
line correspondences. The results for the non-planar and planar configurations
are shown in Fig. 3-(a) and (c), respectively. As expected, the EPnPL and OP-
nPL methods are more accurate than the point only versions, because they
are using additional information. Indeed, OPnPL is very close from the OPnP*
baseline, indicating that line information is very well exploited. Additionally,
our approaches work remarkably better than DLT (the other PnPL solution)
and the rest of PnL methods. In Fig. 4-(a) and (c) we observe that the methods’
accuracy w.r.t. an increasing number of points also shows that our approaches
exhibit the best performances.

(b) Constant number of constraints. We also provide results of accuracy w.r.t.
noise in which we limit the total number of constraints, either obtained from
line or point correspondences, to a constant value (np = 10 for PnP methods,
nl = 10 for PnL methods and np = 5, nl = 5 for PnPL methods). Note that PnP
algorithms will be in this case in a clear advantage, as we are feeding them with
point correspondences just perturbed by noise. PnL and PnPL algorithms need
to deal with weaker line correspondences which besides noisy, are less spatially
constrained. Results in Fig. 3-(b) and (d) confirm this. EPnP and OPnP have
largely improved their performance compared to the previous scenario, but what
is very remarkable is that OPnPL is almost as good as its point-only version
OPnP. EPnPL is more clearly behind EPnP. In any event, our solutions again
perform much better than DLT and the PnL algorithms. Similar performance
patterns can be observed in Fig. 4-(b) and (d) when evaluating the accuracy
w.r.t. number of constraints in the non-planar case. For the planar case, our two
solutions clearly outperform all other approaches, specially in rotation error.
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Fig. 6. Running times for increasing number of correspondences. Left: All methods.
Center: Phases of our approaches. ‘Processing’ (center-left) includes the calculation of
2D line equations and the line correction from Sec. 3.3. ‘Solving’ (center-right) refers
to the actual time taken to compute the pose as described in Sect. 3.4 and 3.5.

Pose from lines only. In this experiment we just compare the line-based ap-
proaches, i.e, the PnL and PnPL methods (but only fed with line correspon-
dences). We consider nl = 10. In Fig. 5-(a) and (b) we show the pose accuracy
at increasing levels of noise, for the nonplanar and planar case. EPnPL and OP-
nPL perform consistently better than all other approaches, specially OPnPL.
We also observed that PnL methods are very unstable under planar configura-
tions and, in particular, Pluecker [33] did not manage to work and Mirzaei [28]
yielded a very large error (out of bounds in the graphs).

Scalability. We evaluate the runtime of the methods for an increasing number
of point and line correspondences. For the PnL and PnP methods we used np and
nl correspondences, respectively, with np = nl. The PnPL methods receive twice
the number of correspondences, i.e, np+nl. Fig. 6-left shows the results, where all
methods are implemented in MATLAB. As expected, the runtime of OPnPL and
EPnPL is about twice the runtime of their point-only counterparts, confirming
they are still O(n) algorithms. This linear time is maintained even having to
execute the correction scheme of the line segments described in Sect. 3.3. For this
to happen, our implementations exploit efficient vectorized operations. Fig. 6-
right reports the time taken by our approach at different phases.

Shift of line segments. As discussed above, to simulate real situations in which
a 3D reference line on the model may only be partially projected onto the input
image, we enforce the detected lines to be shifted versions of the true projected
lines. In this experiment, we evaluate the robustness of the PnL and PnPL
algorithms to this shift, which is controlled by means of a parameter k ∈ [0, 1].
k = 0 would correspond to a non-shift, i.e., {pi,qi} = {pid,qid}. k = 1 would
correspond to a shift of 3 units between the true projected and the detected line
endpoints. Additionally, we consider another baseline, the OPnP naive, where
we feed the OPnP algorithm with the correspondences {Pi,Qi} ↔ {pid,qid}. The
results are shown in Fig. 7. Note that PnL methods and DLT are insensitive to
the amount of shift (Mirzaei [28] occasionally fails, but this is independent on
the amount of shift). This was expected, as these algorithms only consider the
line directions in the image plane, and not the particular position of the lines.
Our EPnPL and OPnPL approaches could be more sensitive, as we explicitly use
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Fig. 7. Robustness to the amount of shift between the 3D reference lines and the
projected ones. See text for details.

the position of the line in the image plane. However, the correction step we use
in Sect. 3.3 gets rid of this problem. As expected OPnP naive fails completely.

4.2 Real Images

We also evaluated our approach on real images of the NYU2 [39] and EPFL
Castle-P19 [41] datasets. These are datasets with structured objects (indoor and
man-made scenarios) and with a large amount of straight lines and repetitive
patterns that will benefit of a joint point and line based approach. For these
experiments we will only evaluate the point based OPnP and the OPnPL, either
using only lines or lines with points.

We implemented a standard structure from motion pipeline on triplets of
images for building the 3D models. Details are provided in the supplemental
material. One of the images of the triplet is then taken to be the reference and
another the test image. SIFT feature points are detected in both images and
line features are detected and represented using the recent scale invariant line
descriptor [43], shown to be adequate for wide baseline matching. The test image
is matched against the model, using RANSAC with P3P for the point-only case;
and using RANSAC with OPnPL for a combination of four points or lines (4
lines, 3 lines/1 point, etc.) The final pose is computed using the points within
the concensus for the OPnP. For the OPnPL we consider the concensus made of
both points and lines and the concensus made of only lines.

Figure 8 reports sample images of both datasets, including both quantita-
tive and qualitative results. As can be seen, these type of scenarios (repetitive
patterns in the castle, many straight and planar surfaces, low textured areas),
are situations in which the point-based approaches are prone to fail, and where
lines and lines+points methods perform more robustly.

5 Conclusion

In this paper we have proposed an approach to integrate 3D-to-2D line correspon-
dences within the formulation of two state-of-the-art PnP algorithms, allowing
them to indistinctly treat points, lines or a combination of them. In order to
do so, we introduce an algebraic line error that is formulated in terms of the
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OPnP (pt) OPnPL (lin)/(pt+lin) OPnP (pt) OPnPL (lin)/(pt+lin)

(21.3, 100.0) (9.3, 30.5)/(9.5, 28.2) (61.5, 605.4) (0.4, 6.0)/(0.3, 5.7)

(1.3, 33.8) (0.6, 9.1)/(0.2, 2.6) (118.2, 328.0) (2.7, 11.5)/(2.7, 11.3)

(3.2, 100.0) (0.8, 3.3)/(0.9, 5.6) (9.5, 100.0) (0.7, 3.0)/(0.2, 1.3)

(31.8, 162.2) (1.3, 6.8)/(1.3, 6.8) (1.3, 22.0) (0.9, 10.1)/(0.2, 2.3)

Fig. 8. Pose estimation on the NYU2 and Castle (last row) datasets, for OPnP and
OPnPL. The numbers on top of each image indicate the rotation and translation error
as pairs (Rot. Err. (deg), Translation Error (%)). For the OPnPL we report both the
error of the only line case, and of the case with joint points and lines. The lines of the
3D model are reprojected onto the images using the estimated pose. For the OPnPL
we reproject the lines using the pose estimated using both points and lines.

line endpoints and which is robust to large shifts between their 3D positions
and its 2D projection. This reproduces the situation that occurs in practice,
where 3D model lines are just partially observed in the image due to occlusions
or mis-detections. We extensively evaluate our algorithms on both synthetic
and real images, showing a boost in performance w.r.t. other approaches, either
those that only use lines, points or a combination of both. Additionally, our
approach retains the O(n) capabilities of the PnP algorithms we build upon,
making them appropriate for real time computations in structure-from-motion
frameworks, that since to date have mostly exploited point correspondences. We
plan to explore this line in the near future.
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