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Abstract

We present a new “learning-to-learn”-type approach that enables rapid learning of con-
cepts from small-to-medium sized training sets and is primarily designed for web-
initialized image retrieval. At the core of our approach is a deep architecture (a Set2Model
network) that maps sets of examples to simple generative probabilistic models such as
Gaussians or mixtures of Gaussians in the space of high-dimensional descriptors. The
parameters of the embedding into the descriptor space are trained in the end-to-end
fashion in the meta-learning stage using a set of training learning problems. The main
technical novelty of our approach is the derivation of the backprop process through the
mixture model fitting, which makes the likelihood of the resulting models differentiable
with respect to the positions of the input descriptors.

While the meta-learning process for a Set2Model network is discriminative, a trained
Set2Model network performs generative learning of generative models in the descriptor
space, which facilitates learning in the cases when no negative examples are available,
and whenever the concept being learned is polysemous or represented by noisy training
sets. Among other experiments, we demonstrate that these properties allow Set2Model
networks to pick visual concepts from the raw outputs of Internet image search engines
better than a set of strong baselines.

Keywords: learning-to-learn, deep learning, Internet-based computer vision, image
retrieval, Gaussian mixture model, ImageNet
2010 MSC: 00-01, 99-00

1. Introduction

The ability to learn concepts from small training sets has emerged as an important
frontier in AI. It is well known [1] that such ability is a hallmark of human intelligence,
as humans demonstrate remarkable ability to learn complex visual concepts from only
few representative images. Despite surpassing human intelligence in many narrow
application domains, AI systems are not able to match this human ability.
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Figure 1: Top (blue): the Set2Model (S2M) network, which takes the set of data points (e.g. images), maps
them through a non-linear architecture (e.g. a deep ConvNet) to a high-dimensional descriptor space, and
then fits a generative model (e.g. Gaussian mixture) to the resulting set of descriptors. The parameters of the
deep embedding are optimized in the end-to-end meta-learning stage, while the generative model is fitted
in the few-shot learning stage. Bottom (green): our motivating application (Internet-based learning and
retrieval). Given a visual concept “raspberry”, the user obtains a noisy image set depicting raspberries from
an Internet image search engine. A pre-meta-learned Set2Model network then maps the set to a mixture
model in the descriptor space. Given an unannotated dataset of images, the user can search for images with
raspberries by mapping every image to the descriptor space (using the same deep embedding from the S2M
network) and evaluating the likelihood w.r.t. the obtained model.

Such ability has important practical applications. For example, to pick up a new
visual concept, most modern computer vision systems require a set of images depicting
this concept. Such an image set is usually mined from the World Wide Web using an
Intenet image search engine or comes from a website containing tagged images. Most
notable and influential in this respect is the Image-Net project [2] that has the goal of
obtaining a “clean” image set for each of the 80,000+ visual synsets corresponding to
English nouns. For each such noun, the image set is first obtained by querying the
search engine and is then curated through crowd-sourced human labour. The second
step (screening by humans) represents a significant burden. As a result, while the pos-
itive influence of the Image-Net project on the fields of computer vision and artificial
intelligence has been enormous, the progress towards its initial goal has stalled at about
one quarter (at the time of submission 21,841 synsets out of 80,000 have been indexed).

The use of uncurated image sets from Internet search engines can potentially en-
able computers to learn visual concepts automatically and without humans in the loop.
Such capability is highly beneficial for intelligent systems, especially in certain scenar-
ios, such as open-vocabulary image retrieval that allows users to formulate queries to
image collections using arbitrary natural language queries. The use of uncurated image
sets obtained from the web, however, is known to be challenging [3, 4], since despite
the ever-improving performance of image search engines, the returned image sets still
contain irrelevant images, since many natural language queries are inherently polyse-
mous, and since many visual concepts often correspond to different visual aspects (e.g.
outdoor and indoor views of a certain landmark building).

Here, we introduce a new meta-learning approach that is based around a new deep
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learning architecture called Set2Model (S2M) network. An S2M network can be trained
to learn new concepts from small-to-medium sized training sets. To map a set of ex-
amples to a generative model, a pre-trained S2M network first embeds them into a
high-dimensional space, and then fits a generative model in that space to the outputs of
the mapping. The training process for the S2M model considers a large set of modeling
tasks and corresponds to the tuning of the parameters of the non-linear embedding in
order to facilitate easy generative learning for the embedded data.

Unlike analogous meta-learning approaches [5, 6, 7] that learn to learn discrim-
inative classifiers, a trained Set2Model outputs generative models (in this work, we
investigate Gaussians and Gaussian mixtures with diagonal covariance matrices). Con-
sequently, a trained Set2Model can learn concepts from only positive examples, which
is a more natural setup in many scenarios where negative/background class can be
much more diverse than the positive class. Through the use of Gaussian mixtures,
S2M networks can also efficiently handle polysemous concepts as well as outliers in
the provided training sets. This makes Set2Model networks suitable for picking up
concepts from uncurated Internet search engine outputs.

Below, we briefly discuss relevant prior works in Section 2, detail our approach in
Section 3, present results of experimental comparisons in Section 4 and conclude with
a short discussion in Section 5.

2. Related work

Meta-learning and Few-shot Learning. Meta-learning (aka “learning-to-learn”) [8, 9]
has been a popular approach to handle multi-shot learning scenarios. Interplays be-
tween discriminative training and generative probabilistic models in the small training
size regime has been investigated in [10, 11, 12], where some of the parameters of such
models were optimized based on discriminative criteria. Minka [13] has pointed out a
principled way to derive discriminatively-trainable models.

Learning concepts from small training sets (sometimes referred to as “few-shot
learning”) has been a subject of intense recent research in meta-learning. The common
idea is to learn internal representation, where few-shot learning is simple by observ-
ing a large number of few-shot learning tasks. The previous approaches [5, 14, 7, 6]
invariably focused on learning multi-class discriminative classifiers for such few-shot
learning problems. Our approach however focuses on single-concept learning prob-
lems, which are presented in the form of positive one-class samples. We separate dis-
criminative and generative learning across the two layers of our meta-learning system.
In particular, once the embedding within a S2M network is trained discriminatively, a
generative learning process in the descriptor space (which is fixed after the S2M train-
ing) is used to fit a generative model over those embeddings.

The approach [15] learns a metric in the image feature domain in order to improve
distance-based image classification and shows that the resulting metric generalizes well
to the classes unseen during training. It also proposes a Nearest Class Mean (NCM)
classifier as a distance to a mean of image class descriptors which we use as one of the
baseline methods.
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Internet-based learning. Historically, Internet image search relied mostly on textual
information surrounding the image using image content to improve ranking. Address-
ing this, the works [16, 17] focused on how to use visual content in order to improve
ranking of the search results. A simple bag of visual words model was used in [16, 17],
with [17] showing that a discrimative SVM classifier performs better than standard
information retrieval techniques.

[18] addressed large-scale image retrieval problem using image sets as queries and
SIFT-based bag-of-words vectors as image features, considering several variants in-
cluding binary SVM learned on the query set with randomly sampled negatives, rank-
ing using averaged query feature vectors and averaging of the rankings for each indi-
vidual query from the query set. The works [19, 20] developed these methods further
proposing cascades of classifiers for real-time on-the-fly object category retrieval in
large image and video datasets using various features including deep features in [20].

While we consider retrieval from unannotated test collection using a model built
from a visual concept query, the work [3] proposes to generate image-to-text mapping
for all the images in the test collection and then to process textual queries using this
direct mapping. The approach was evaluated on objects from lab and kitchen environ-
ment, as the users were asked to formulate textual queries and the retrieval performance
was measured. While this approach performs better than “blind” visual matching as in
[18], it requires computationally intensive preprocessing which in fact is requesting a
large database of images with detailed text annotations.

Finally, we mention a number of less related approaches that worked with Internet
data. The work [4] describes a system for indexing user image collections with the
help of Internet search and various datasources such as maps to find locations. In [21],
a robotic system is proposed that uses various Internet datasources including image
search engine to learn how to perform certain complex activities. Their system learns
object classes by training an SVM classifier on image sets resulting from multiple
Internet search engine queries. The approach [22] uses Internet as a source of 3D
models to learn 3D object classifiers in point clouds.

Apart from the works from the computer vision and the robotics communities dis-
cussed above, our approach is also related to certain directions pursued in the infor-
mation retrieval and multimedia search communities. These include multiple query
retrieval systems (e.g. [18]) and a large body of query reranking approaches, some of
which use discriminative learning [23, 24].

3. Set2Model Networks

Set2Model networks imply two levels of learning following the ”learning-to-learn”
principle (e.g., [14]). It implies that a system has two timescales, and the rapid one
is associated with learning to solve a task, while the gradual one aims at acquisition
of knowledge across tasks. In case of the Set2Model network, on the rapid timescale
the network maps a number of samples to a generative model, while on the gradual
timescale the parameters of the network are tuned based on a large number of sam-
ple class-modeling problems. We call the training process happening at the gradual
timescale the meta-learning stage. The application of the network to a particular prob-
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lem is called the learning stage. Below, we discuss the details of these stages, first
starting with the learning stage, and then discussing the meta-learning stage.

3.1. Learning models with pre-trained S2M networks
The learning stage (Figure 1,top) considers the set of examplesX = {x1, x2, . . . , xN},

X ⊂ X , such as a set of images depicting a certain concept. In the learning stage, the
S2M network mapsX to a probabilistic model that can be used to evaluate probabilities
of other elements belonging to the same concept.

Modeling the probability distribution in the original space (e.g. images) might be
overly complex. Therefore, the S2M network firstly maps the elements of X to a
specially constructed latent space of descriptors and then uses a simple parametric
probability density function (pdf) to model it in the new space. We denote this mapping
as f(x;w) : X 7→ Rn, whereas w denotes the parameters of the mapping. In this work,
we focus on deep convolutional networks as such mappings, though our approach is not
specific to a particular architecture.

The mapping f thus transforms the original set X into a descriptor set D =
{d1, d2, . . . , dN}, where di = f(xi;w). The last stage of the learning process fits
a parametric generative model with the pdf pGM (d; θ) to the set D, where θ are the
model parameters. In this work, we consider Gaussian and mixture of Gaussian mod-
els with diagonal covariance matrices. We chose a generative approach to descriptor set
modelling because it led to better precision while using the pre-learned deep features
in our experiments (see Table 1, ’Gauss-PL’ vs ’SVM-PL’).

The fitting of the model to the setD is performed using maximum likelihood (ML).
Thus the parameters θ∗ that maximize the likelihood function l(θ|D) are sought:

θ∗ = arg max
θ
l(θ|D), l(θ|D) =

N∑
i=1

log pGM (di, θ). (1)

Overall, the learning performed by an S2M network can be regarded as the mapping:

F : X → θ∗. (2)

And the relevance of a new data point (e.g. an image) z to the concept represented by
the set X can be estimated using the obtained density function:

p(z|X;w) = pGM (f(z;w), F (X;w)). (3)

The resulting probabilistic relevance measure can be used e.g. to perform retrieval from
an untagged set (Figure 1,bottom).

We also consider adaptive choice of the most appropriate model. In our case this is
the choice between a single Gaussian and mixtures with different number of parame-
ters. We use the Bayesian Information Criterion (BIC) [25] to solve the task. This is a
general approach proposed for model choice in machine learning when it is impossible
to use a validation set. We fit all the available models as described above, compute the
value of the criterion:

BIC(k) = 2kn log(N)− 2l(θ|D), (4)

where k is the number of mixture components, and choose the model which gives the
smallest one.
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3.2. Meta-Learning S2M Networks
The goal of the meta-learning is to find the parameters w of the mapping f(x,w)

such that the learning process discussed above works well for different concepts.
The meta-learning is performed using the set of tuples {Ti = (Xi, Z+,i, Z−,i)},

where each tuple Ti includes the concept-describing set Xi = {x1
i , x

2
i , . . . , x

Ni
i }, the

relevant examples set Z+,i = {z1
+,i, z

2
+,i, . . . , z

M+,i

+,i } and the irrelevant examples set

Z−,i = {z1
−,i, z

2
−,i, . . . , z

M−,i
−,i }. For example, X1 can be some set of images of apples

from the Internet, the set of Z+,1 can be another set of different images also containing
apples, and all the images from Z−,1 will not contain apples. The second training tuple
can then include the sets X2 and Z+,2 of pear images and the set of Z−,2 of non-pear
images, and so on.

Generally, the meta-learning stage seeks the parametersw such that across all train-
ing tuples, the probabilistic relevances estimated using (3) are higher for the members
of the relevant sets than for the members of the irrelevant sets, i.e.:

p(zk+,i|Xi;w) > p(zl−,i|Xi;w), (5)

for various i, k, l.
There are several ways to design loss functions that seek to enforce (5). E.g. a

loss that draws random elements of relevant and irrelevant sets and computes a mono-
tonic function of the differences in their relevance values. Here, we use a tuple-level
loss that directly estimates the probability of the (5) to be violated. Given a tuple
(Xi, Z+,i, Z−,i), let θ∗i be F (Xi;w). Using (3), we compute the relevance scores for
the elements of the relevant and irrelevant sets.

LetR+,i be the set of relevances for the relevant setZi,+ (i.e.R+,i = {p(z1
+,i|Xi;w),

p(z2
+,i|Xi;w) . . . p(z

M+,i

+,i |Xi;w)}), and let R−,i be the set of relevances for the irrel-
evant set Zi,−. Then the loss based on the probability of the violation of (5) can be
computed as:

L(w) =
∑
i

1

M+,iM−,i

M+,i∑
k=1

M−,i∑
l=1

χ
[
Rk+,i < Rl−,i

]
, (6)

where χ[·] returns one if the argument is true and zero otherwise. Here, each term in the
outer summation corresponds to the empirical estimate of the probability of violation
of (5).

While the loss (6) is not piecewise-differentiable, we consider a histogram trick
recently suggested in [26] for metric learning. The idea is to accumulate the relevances
for the relevant and irrelevant sets into histograms, and then estimate the required prob-
ability (6) using these histograms. Here, to compute the histograms, we fix the trian-
gular kernel density estimator K(s, ω) that for the argument s and the width parameter
ω is defined as:

K(s, ω) = max{1− 2|s|
ω
, 0}. (7)

We choose lmin,i and lmax,i to be the lower and the upper bounds of the numbers in
the union of R+,i and R−,i, and further accumulate the two normalized histograms
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h+,i and h−,i spanning the range from lmin,i to lmax,i having B bins each and corre-
sponding to the setsR+,i andR−,i respectively. As discussed in [26], the entries of the
histograms h+,i and h−,i depend in a piecewise-differentiable manner on the entries of
R+,i and R−,i.

Given the two histograms, the loss for the tuple (Xi, Z+,i, Z−,i) is defined as:

L(w) =
∑
i

B∑
k=1

hk−,i

B∑
l=1

hl+,i , (8)

where hk−,i and hl+,j denote the entries of the histograms. Note that the new loss
(8) can be regarded as piecewise-differentiable approximation to the non-differentiable
loss (6).

Given the loss (8) (or any other piecewise-differentiable loss enforcing (5)), the
meta-learning process follows the standard stochastic optimization procedure. The
training tuples are sampled randomly, the stochastic approximations of the loss (8)
based on single tuples are computed by forward propagation. During forward propa-
gation, the maximum likelihood fitting (1) is done by conventional means (e.g. closed
form for Gaussian distribution, EM-algorithm for Gaussian mixture model). The es-
timated loss is then backpropagated through the S2M network. Any of the SGD-
based optimization algorithms such as ADAM [27] can be used to update the mapping
weights w. Backpropagation through the S2M network F (X,w) however relies on the
ability to backprop through the maximum-likelihood model fitting (1). This backprop
step is discussed below.

3.3. Backpropagation through model fitting

We now detail the backpropagation through the ML model fitting (1), i.e. the com-
putation of the partial derivatives ∂θ∗

∂di
(j)

, where ·(j) denotes the j-th component of a

vector. We start with the Gaussian model, for which this computation is based on a
simple closed-form expression, and then proceed to the case of Gaussian mixtures.

In the first case, we consider the Gaussian pdf pG(d, θ) = N (d, µ,Σ):

N (d, µ,Σ) = (2π)−n/2|Σ|−1/2e−1/2(d−µ)TΣ−1(d−µ), (9)

where µ is a mean and Σ is a covariance matrix which we take to be diagonal, and
θ =

(
µT , φT

)T
, denoting Σ = diagφ. The optimal (in the ML sense) parameters θ∗

can then be found as:

µ∗ =
1

N
di, φ∗(i) =

1

N

∑
j

(
dj(i) − µ

∗
(i)

)2

, (10)

Differentiation of these formulas w.r.t. the descriptor vectors di leads to the following:

∇diµ∗ =
1

N
1n,

∂φ∗(i)

∂dj(k)

= δik
2

N
(dj(k) − µ

∗
(i)), (11)
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where 1n is a vector of ones of dimension n, δik is a Kronecker symbol, which is zero
when i6=k and one for i=k.

In the case of Gaussian mixtures (GMM), we consider the following pdf:

pGMM (d, θ) =

k∑
i=1

viN (d, µi,Σi), (12)

where k is a number of GMM components, N denotes Gaussian pdfs, {µi}ki=1 are the
means, Σi = diag(φi) are the diagonal covariance matrices, {vi}ki=1 are weights of
the corresponding components and θ consists of the means, covariance diagonals and
weights concatenated. The following constraint on the weights should be satisfied:

c(θ) =

k∑
i=1

vi − 1 = 0. (13)

As θ∗ delivers maximum to an optimization problem with equality constraints, the
method of Lagrange multipliers can be used to derive conditions on the partial deriva-
tives. We consider the scalar multiplier λ∗ corresponding to the constraint (13) that
maximizes the Lagrangian L(θ, λ):

L(θ, λ) = l(θ|D) + λc(θ), (θ∗, λ∗) = arg max L(θ, λ), (14)

The following conditions of optimality then hold for θ∗ and λ∗:{
∇θL(θ∗, λ∗) = 0,
∇λL(θ∗, λ∗) = 0.

(15)

Applying differentiation over di brings the following system of equations:

{
∂2

∂θ2L(θ∗, λ∗)∇T θ∗ + ∂2

∂λ∂θL(θ∗, λ∗)∇Tλ∗ + ∂2

∂di∂θL(θ∗, λ∗) = 0,
∂2

∂θ∂λL(θ∗, λ∗)∇T θ∗ + ∂2

∂λ2L(θ∗, λ∗)∇Tλ∗ + ∂2

∂di∂λL(θ∗, λ∗) = 0,
(16)

and these are linear equations w.r.t. unknown matrix ∇θ∗ and vector ∇λ∗ of par-
tial derivatives w.r.t. di(j) (in particular, ∇θ∗ is composed of the values ∂θ∗

∂di
(j)

that are

sought in this derivation). If m is the dimensionality of θ, then (15) contains m + 1
equations. As each of the equation is differentiated by nN variables corresponding to
the descriptors, the system (16) contains (m+ 1)nN equations on the same number of
entries in ∇θ∗ and ∇λ∗. Solving the system (16) then yields the values of the partial
derivatives ∂θ∗

∂di
(j)

. The linear system solution is performed as the part of the backprop-

agation process. The system very often becomes sparse allowing for the significant
solution process speedup, see appendix A1.

Finally, we note that a similar derivation can be conducted for other generative
probabilistic models. Furthermore, one could address discriminative model fitting (e.g.
logistic regression) in the same setting as in [5, 14, 7, 6], where the set X is augmented
with class labels.
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Figure 2: Retrieval comparison for the ImageNet dataset (query = ‘crucian carp,Carassius carassius,Carassius
vulgaris,’) - left and the Oxford Flowers dataset (query = ‘silverbush’) right. Top row: part of the query image
set obtained from Google Search API using the query. Other rows: the top ranked images provided by various
methods, namely AVG-FT (average), NN-FT (nearest neighbor), S2M-Gauss (one Gaussian), S2M-GMM2
(mixture of two Gaussians), S2M-GMM3 (mixture of three Gaussians) and S2M-GMM4 (mixture of four
Gaussians) using the fine-tuned descriptors, SVM-PL using the pre-learned ’fc8’ features. Color bars encode
that image belongs to a certain mixture component. End-to-end-based methods perform better on the given
examples. Mixture models successfully filter noisy search engine outputs and capture multiple visual aspects
of relevant images.

4. Experiments

Below we provide the experimental evaluation of Set2Model networks (both using
single Gaussians and Gaussian mixtures as generative models). We investigate the im-
portance of learning the underlying features. We show that Set2Model networks can
be used as generative set models and compare the performance of the Set2Model net-
works to a number of baselines. Also we apply the Set2Model networks in a few-shot
learning problem mainly for the sake of comparison to other meta-learning approaches.

4.1. Protocols
We evaluate the S2M networks in three different sets of experiments. The bulk of

the experiments investigates image retrieval with concept-describing image sets gener-
ated using Internet image search engines (web-initialized retrieval). Then, we evaluate
the possibility of handwritten character retrieval using the Omniglot dataset. Finally,
we show that S2M networks can be used for classification of the characters from Om-
niglot. In particular, to solve the 5-way or 20-way classification problem we build a
generative model for each class and compare the ranks w.r.t. these models during test
time. The latter experiment shows that the S2M networks can achieve few-shot learn-
ing accuracy comparable to the state of the art discriminative approaches although they
are not specifically tailored for this task. The results of retrieval experiments are in the
Table 1, and the character classification results are in the Table 2.

In each case, we split classes into training, validation, and testing. We form the
training set out of the training classes, and we train the methods (including ours) on
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Figure 3: Retrieval comparison for the ImageNet dataset (left: query = ‘silver lime,silver linden,Tilia tomen-
tosa’, right: query=‘bumper’). Top row: part of the query image set obtained from Google Search API using
the query. Other rows: the top ranked images provided by various methods, namely AVG-FT (average), NN-
FT (nearest neighbor), S2M-Gauss (one Gaussian), S2M-GMM2 (mixture of two Gaussians), S2M-GMM3
(mixture of three Gaussians) and S2M-GMM4 (mixture of four Gaussians) using the fine-tuned descriptors,
SVM-PL using the pre-learned ’fc8’ features. Color bars encode that image belongs to a certain mixture
component. S2M networks often group all relevant query images into a single Gaussian component.

Figure 4: Retrieval comparison for the left and the Oxford Flowers dataset (query=‘blackberry Lily’) - left
and Object RGBD dataset (query = ‘apple’) - right. Top row: part of the query image set obtained from
Google Search API using the query. Other rows: the top ranked images provided by various methods,
namely AVG-FT (average), NN-FT (nearest neighbor), S2M-Gauss (one Gaussian), S2M-GMM2 (mixture
of two Gaussians), S2M-GMM3 (mixture of three Gaussians) and S2M-GMM4 (mixture of four Gaussians)
using the fine-tuned descriptors, SVM-PL using the pre-learned ’fc8’ features. Color bars encode that image
belongs to a certain mixture component. Highly polysemous queries can be successfully handled by the
Set2Model networks.
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such classes. The methods are compared on the test set. During test, we use the mean
average precision (mAP) as the accuracy metric for the retrieval. The meta parameters
for all methods are tuned on the validation set.

We perform web-initialized experiments with three different datasets. Google im-
age search is used to obtain the concept-describing sets at all stages (the API for the
search engine typically returns 90-100 images). We use class names provided with
the datasets to define text queries to the engine. No textual augmentations or search
modifiers have been used. Since some of the considered datasets have overlaps with
the search engine output, before running the experiments, we identified potential near-
duplicates between the Google search results and the datasets using deep descriptors
from non-finetuned convolutional network (AlexNet). We then manually checked the
potential pairs and removed the true near duplicates from consideration.

4.2. Implementation details

We use Caffe [28] framework to work with convolutional networks. Web-initialized
retrieval experiments are based on the AlexNet architecture [29] and character retrieval
ones are based on the LeNet architecture [30] (Caffe versions are used in all cases).
We note that more modern deep convolutional architectures could be used in place of
AlexNet or LeNet, however such substitution is likely to benefit all methods equally.
For the character classification, we use our Caffe implementation of the network de-
scribed in [6]. It consists of a stack of modules, and each module is a sequence of
3 × 3 convolution with 64 filters, batch normalization, Relu non-linearity and 2 × 2
max-pooling. It takes 28× 28 images as input and produces 64-dimensional features.

When performing baseline experiments with pre-learned features, we use 1000-
dimensional features that are produced by AlexNet (for the tasks we consider, these
features performed optimally or close to optimally compared to other layers). When
performing end-to-end learning in case of web-initialized or character retrieval exper-
iments, we replace the last fully connected layer with a smaller one of the same type,
of size 128 or 100 respectively.

We perform l2-normalization of the descriptors at the end of the network. In the
web-initialized experiments, we start learning from the network weights of the AlexNet
provided with Caffe, while the last fully-connected layer for the end-to-end trained
architectures is initialized randomly.

The set modelling layer and the loss layer have been implemented using Theano [31],
which was used mainly for symbolic differentiation. For back-propagation and learn-
ing we use the Caffe implementation of the ADAM algorithm [27] with momentum
0.9. We choose the learning rate and the termination moment using validation sets. To
solve the linear system (16), we utilize its sparsity, since in most cases the coefficient
matrices consist of diagonal blocks.

Training of the S2M networks includes an EM algorithm for fitting the GMMs.
When a class was encountered for the first time during training, GMM fitting was
started with random initialization, and the resulting GMM parameters were memorized.
Next time when samples from this class appeared, the saved parameters served as an
initial point for the EM algorithm.
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4.3. Baselines

Below we describe a set of baseline algorithms. For each of these baselines, we use
a certain (not necessarily probabilistic) relevance score r(z|X;w) in the same way as
we use p(z|X;w) in the S2M network. The following baselines are considered:

• The mean-based system (AVG), which ranks the images in the test set based
on the scalar product between their descriptors and the mean of the descriptors
f(xi, w) of the concept-describing set:

rAVG(z|X;w) =

(
1

N

∑
f(xi, w)

)T
z. (17)

• The nearest neighbor (NN) ranker that ranks images in the test set based on the
maximum of their scalar product with the query set descriptors:

rNN (z|X;w) = max
i

(
f(xi, w)

)T
z. (18)

• The support vector machine (SVM) 1-vs-all classifier as in [18], where SVM
is learned using the query images as positive class and 2|X| randomly sampled
images from other queries as negative class. If we denote the weight vector of
the SVM as u({f(xi, w)}Ni=1), then the ranking function can be defined as:

rSVM (z|X;w) = zTu({f(xi, w)}Ni=1). (19)

We evaluate these baseline methods as well as single Gaussian and GMM models
for the pre-learned descriptors(’-PL’ in Table 1). We also consider fine-tuning of the
convolutional network for the mean (AVG) and the nearest neighbor (NN) ranking (’-
FT’ in Table 1). In this case, we use exactly the same learning architecture as explained
in the previous section, but plug the corresponding relevance measure rNN (Z|X;w)
or rAVG(z|X;w) instead of (3) into the computation of the histogram loss.

Finally, our strongest baseline (Gauss-AVG-FT in Table 1) is an ablated S2M
network that is fine-tuned for the mean-based retrieval, but uses Gaussian model fit-
ting during retrieval in the same way as our model based on single Gaussian does.
Alongside the baselines, we report the results of our system (S2M network) for dif-
ferent number of Gaussians in the mixtures: for the scenario when we use exactly
same number of mixture components during retrieval and during meta-learning (’S2M-
Gauss’, ’S2M-GMMm’, m = 2, 3, 4) as well as for the scenario when the number
mixture components is fixed during meta-learning but chosen using BIC during re-
trieval (’S2M-BGMM-Gauss’, ’S2M-BGMM-GMMm’, m = 2, 3, 4). We suppose
that meta-learning with the model having a particular number of components does not
necessarily mean that the same number of components should be used for learning,
taking into account that a mixture model with k1 components can be considered a par-
ticular case of a mixture model with k2 > k1 components when k2 − k1 weights are
exactly zero.
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Model ImageNet
RGBD
Object

RGBD
Scenes v. 2

Oxford
Flowers

Omniglot

NN-PL 0.070 0.316 0.472 0.076 -
NN-FT 0.073 0.318 0.490 0.528 0.145

SVM-PL 0.080 0.481 0.709 0.145 -
AVG-PL 0.183 0.556 0.637 0.212 -
AVG-FT 0.236 0.669 0.716 0.439 0.661

Gauss-PL 0.186 0.529 0.625 0.240 -
S2M-Gauss 0.254 0.706 0.753 0.467 0.740

Gauss-AVG-FT 0.246 0.676 0.728 0.465 0.695
GMM2-PL 0.180 0.483 0.653 0.301 -

S2M-GMM2 0.265 0.711 0.683 0.560 0.689
GMM3-PL 0.174 0.473 0.586 0.319 -

S2M-GMM3 0.258 0.658 0.719 0.581 -
GMM4-PL 0.178 0.455 0.568 0.327 -

S2M-GMM4 0.250 0.690 0.598 0.577 -
S2M-BGMM-Gauss 0.257 0.667 0.779 0.572 0.728

S2M-BGMM-GMM2 0.265 0.729 0.753 0.563 0.682
S2M-BGMM-GMM3 0.268 0.707 0.767 0.571 -
S2M-BGMM-GMM4 0.263 0.649 0.770 0.591 -

Table 1: Mean average precisions for the experiments (see text for discussion). Top row: dataset. The base-
lines either use pre-learned (’-PL’) or fine-tuned (’-FT’) deep features. Gauss-Avg-FT baseline uses features
fine-tuned using an AVG baseline (same as AVG-FT), but a Gaussian model on top. Methods with the ’S2M’
prefix are the proposed ones. ’S2M-BGMM-XXX’ means the S2M network with features fine-tuned as for
the ’S2M-XXX’ network but using BIC to choose the mixture component number during retrieval. We do
not perform any fine-tuning for the SVM, and we do not use GMM with 3 or 4 components with Omniglot
due to small size of the concept-describing sets that contain only 10 images. The best achieved results are
bolded. The Set2Model networks (S2M-) outperform baselines. End-to-end finetuning improves the results
considerably for all methods (’-PL’ vs ’-FT’). Adaptive model choice using BIC improves precision. Also,
using correct end-to-end learning for a single Gaussian (S2M-Gauss) performs better than using end-to-end
learning for mean-based retrieval, while using Gaussian models fitted to resulting features during retrieval
(Gauss-AVG-FT).

Model 5-way 20-way
Matching Nets [6] 0.989 0.985

MANN (No Conv) [14] 0.949 -
Convolutional Siamese Net [32] 0.984 0.965

S2M-Gauss 0.985 0.956

Table 2: Results for the 5-shot 5-way or 20-way classification on the Omniglot dataset. We performed meta-
learning of S2M-Gauss based on the same underlying deep network as described in [6] using the protocol
described in Section 3. During classification, we choose the class label corresponding to the maximal rank
produced by the S2M network for 5 (or 20) considered classes. The testing protocol follows [6].
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4.4. Results

The quantitative results for all datasets are summarized in Tables 1, 2. We also
illustrate retrieval performance of some of the compared methods at the Figures 2, 3, 4.
In these figures we indicate whether the image truly belongs to the query class by
showing a corresponding symbol in the bottom-right corner of the image. Images from
the output of the S2M networks also have a colored bar encoding a particular mixture
component ’responsible’ for this image. We now discuss the considered datasets and
the results on them.

ImageNet. Our first experiment uses classes from the ImageNet dataset [2]. Since we
use networks pretrained on the ILSVRC classes [33], we made sure that 1000 classes
included into the ILSVRC set are excluded from our experiments.

To perform the experiments, we selected 509 random synsets for training, 99 synsets
for validation and 91 synset for testing. The results (Table 1) demonstrate that end-to-
end learning is able to improve the mAP of the baseline methods by 1-4 percent and of
the proposed methods based on distribution fitting by 5-7 percent. Importantly, the gap
between the model that fits a single Gaussian and the model that uses the mean vector
is almost 2 percent. Using mixture models with two or three components improves the
performance further.

We also observe, that uncurated Google image search outputs for some of the Im-
ageNet synsets are very noisy, S2M networks often group all relevant query images
into a single Gaussian component (Figure 2-right, Figure 3). This is often a desirable
performance, since being able to absorb irrelevant aspects of the query into a separate
component may allow to learn a better model for the relevant aspect. At the same time,
when multiple aspects are relevant, multiple mixture components are often able to re-
trieve them as well (Figure 2-left and Figure 5). We show an orthogonal projection of
the 128-dimensional descriptors of one of the test classes from this dataset, of another
test lasses and of the Google outputs corresponding to the chosen class together with
the relevance isolines for a single Gaussian and a GMM onto a plane to show how a
model with multiple Gaussians can more accurately model a distribution than a single
Gaussian and how a single mixture component groups the relevant descriptors, while
the query can contain other visual concepts as well, see Figure 6.

The model choice with the BIC criterion according to (4) gives the best precision
for this dataset. It is achieved in the deep domain constructed by a S2M network with
three mixture components (see Table 1).

RGBD. This experiment uses the RGBD-Object [34] and RGBD-Scenes v.2 [35] datasets
(the latter is used solely for testing). RGBD-Object contains multiple view images
of 200 tabletop objects of 51 category , and for the particular 5 of them the RGBD-
Scenes v.2 contains the RGBD sequences of indoor scenes where they are present,
from which we have segmented the object images.

The amount of relevant images in the Internet search results in this case differs
greatly from category to category. For the polysemous categories such as ’apple’, the
proposed generative models can give significant benefit (Figure 4-right). The results in
Table 1 demonstrate even greater improvements from the end-to-end learning (perhaps
due to a bigger domain gap between the ImageNet and this dataset). Such training
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Figure 5: Set2Model networks can handle polysemous queries in a natural way. Top: part of the query
image set obtained from Google Search API (queries=’supernova’ and ’seal, sealing wax’), bottom: relevant
images retrieved by the three components of the GMM3 model returned by the corresponding S2M network.
In these cases, each mixture component captures a certain aspect of a visual concept.

improves the mAP for the mean classifier by nine percent and for the proposed methods
by 11-14 percent. The methods based on distribution fitting again perform better. Due
to domain shift, S2M Network demonstrates smaller gains when tested on the Scenes
v.2 dataset. The best precisions are again achieved by the S2M network with model
choice based on the BIC criterion, illustrating the fact that this approach is more flexible
and reflects the diverse complexity of concept-describing sets (e.g. a polysemous and
noisy query ’apple’ and a query ’banana’ with a very precisely defined visual concept).

Oxford Flowers. We use the Oxford Flowers-102 dataset [36], consisting of images
of 102 different UK flowers. The dataset was split into 80 categories for training and
validation, and 22 for testing. The results in the Table 1 show that end-to-end learning
procedure improves the mAP on 14 percent for the mean classifier, 16-19 percent for
the proposed models. Figure 2 shows an example of the polysemous and noisy query
(’silverbush’), where the ability of the Gaussian mixture models to capture multi-modal
distributions provides our approach a big advantage. Figure 4-left shows an output for
the query ’blackberry Lily’ where even simple descriptor averaging can bring robust-
ness to the system due to the fact that searched collection is much less diverse than the
query. Model choice with the help of the BIC criterion achieves the best mAP again.
It illustrates flexibility of this approach. Note that meta-learning with larger number
of components works better on this dataset, since the second-best result belongs to a
Gaussian mixture of three components.

Omniglot. Finally, we used the Omniglot dataset [37] (which has become the stan-
dard testbed for meta-learning methods) to test the ability of the S2M network to use
small concept-describing sets for generative model construction. The Omniglot dataset
consists of 20 hand-drawn images for each of the 1623 characters from different alpha-
bets. In the retrieval experiment, for learning and testing we use concept-describing,
relevant and irrelevant sets of ten images, composing one batch of five training tuples
(Xi, Z+,i, Z−,i). We randomly split the dataset into 1200 classes for validation and
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Figure 6: Comparison of the Gaussian and mixture of two Gaussians used by the S2M Network to model
the image descriptor distribution. The descriptors of images from the the Google Image Search output
(query=‘pinto’) - green, the corresponding ImageNet category - light blue, other ImageNet categories from
the test set - red are orthogonally projected onto a plane with the help of Partial Least Squares Regression.
The same approach is used to project isolines of the models for the query image descriptors returned by
the Set2Model network (dashed green for Gaussian and solid green for two component Gaussian mixture
(GMM2)). The descriptors are computed using the end-to-end learning of a Set2Model network with GMM2
model. The descriptor distribution is represented by GMM2 more accurately than by a single Gaussian, each
mixture component captures a separate visual entity of a polysemous query (horse vs car), and only one
mixture component corresponds to the visual concept relevant for the ImageNet images (horse).
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Figure 7: Comparison of the learned descriptor distributions for averaging (top) and Gaussian (bottom)
on Omniglot dataset, projected using Partial Least Squares Regression. For each column we have chosen
triplets of training classes, represented by a separate color. Gaussian-based modeling allows for a more
flexible model in the descriptor space, which is reflected in better accuracy of retrieval (Table 1).

training, and 423 for testing. We rotate images by randomly generated multiples of 90
degrees during testing and training, following [6]. Due to the small size of the concept-
describing sets, S2M networks based on mixtures of two Gaussians are less accurate,
and mixtures of more components were not evaluated. The results in Table 1 show that
single Gaussian model performs best , and Figure 7 illustrates that Gaussian model
handles more diverse descriptor distributions than the averaging baseline allowing for
more complex descriptor distributions to emerge.

Furthermore, to compare against the recent few-shot learning methods we per-
formed a classification experiment on this dataset. During meta-learning, we used a
batch consisting of three training tuples with |Xi| = 5, |Z+,i| = 15, |Z−,i| = 20.
During test time, to do c-way classification we build c models using the S2M network
and choose a class label corresponding to the model producing a maximal rank for the
test example. We compare the results to the state of the art methods at the Table 2.
Although the S2M network is not trained to discriminate between classes, still it can be
used this way during test time and provide competitive results: better than [14], similar
to [32] and not much worse than [6].

5. Summary

In this work we have proposed Set2Model networks as a new architecture for meta-
learning that is particularly suitable for retrieval applications, where queries are given
as sets of positive samples. The Set2Model networks are able to map such queries
into probabilistic models in specially-designed descriptor spaces. The parameters of
such descriptor embeddings are optimized end-to-end, while taking the model fitting
into account. We have shown experimentally that such proper end-to-end training is
beneficial for the retrieval quality.
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In order to gain the ability to handle mixture model fitting within our approach,
we have derived a way for backpropagation through the maximum likelihood model
fitting. We have presented a number of experiments for image retrieval based on noisy
image sets obtained from the Internet image search engines as well as for the hand-
drawn character retrieval that show the ability of the S2M networks to generalize across
classes and handle the challenges of visual concept modeling from small and medium-
sized training sets better than baseline models. We have also shown that generatively
trained S2M networks can achieve similar accuracy to the state of the art in few shot
learning problems.

6. A1. Typical structure of a system matrix for implicit function differentiation

In the following appendix, we derive formulas for the required derivatives of the
likelihood function for the Gaussian Mixture models with diagonal covariance matri-
ces, and show that very often the second derivative matrices become sparse during
meta-learning, which accelerates the process significantly.

The log-likelihood function l(θ|D) is a sum of one-observation likelihood functions
as given in (1).

Theorem. If log-likelihood function log h(θ|d) corresponding to a mixture model
can be represented as a logarithm of a sum of multiplied coordinate-wise likelihood
functions with non-intersecting parameter sets:

log h(θ|d) = log{
k∑
i=1

vi

n∏
j=1

g(θi,j |d)}, (20)

where vi are mixture weights, vi ≥ 0,
∑k
i=1 vi = 1, θ = [θT1 , θ

T
2 , . . . , θ

T
k , v1, v2, . . . , vk]T

is the vector of the model parameters, θi = [θTi,1, θ
T
i,2, . . . , θ

T
i,q]

T is the vector of one
mixture component’s parameters, θij = [θi,j,1, θi,j,2, . . . , θi,j,nc ]

T is the vector of the
coordinate-wise likelihood function parameters of length nc, g(θi,j |d) is a coordinate-
wise likelihood function for the coordinate j, then the second derivatives of log h(θd)
w.r.t. the parameters of the model (except the weights) are

∂2 log h(θ|d)

∂θi,j,k∂θu,s,t
=


(ri − r2

i )
g′k(θi,j |d(j))g′t(θi,s|d(s))
g(θi,j |d(j))g(θi,s|d(s))

, i = u, j 6= s,

ri
g′′kt(θi,j |d(j))
g(θi,j |d(j))

− r2
i
g′k(θi,j |d(j))g′t(θi,j |d(j))

(g(θi,j |d(j)))2
, i = u, j = s,

− 1
h2(θ|d)riru

g′k(θi,j |d(j))
g(θi,j |d(j))

g′t(θu,s|d(s))
g(θu,s|d(s))

, i 6= u,

(21)
where responsibility of the i-th component is defined as a fraction ri =

vi
∏q
j=1 g(θi,j |d(j))
h(θ|d) .

Proof.
The first derivative is:

∂

∂θi,j,k
log h(θ|d) =

1

h(θ|d)
vi

q∏
m=1

g(θi,m|d(m))
g′k(θi,j |dj)
g(θi,j |d(j))

. (22)
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In case when both differentiation variables are the parameters of the same mixture
component, the second derivative is:

∂2

∂θi,j,k∂θi,s,t
log h(θ|d) =

1

h(θ|d)
vi

q∏
m=1

g(θi,m|d(m))
g′k(θi,j |d(j))g

′
t(µi,s|d(s))

g(θi,j |d(j))g(θi,s|d(s))
−

(23)

− 1

h2(θ|d)
v2
i

(
q∏

m=1

g(θi,m|d(m))

)2
g′k(θi,j |d(j))g

′
t(θi,s|d(s))

g(θi,j |d(j))g(θi,s|d(s))
= (24)

= (ri(d)− r2
i (d))

g′k(θi,j |d(j))g
′
t(θi,s|d(s))

g(θi,j |dj)g(θi,s|d(s))
. (25)

In case when both differentiation variables are the parameters of the same coordinate
likelihood function for the same mixture component, the second derivative is:

∂2

∂θi,j,k∂θi,j,t
log h(θ|d) = ri(d)

g′′kt(θi,j |dj)
g(θi,j |dj)

− ri(d)2 g
′
k(θi,j |dj)g′t(θi,j |dj)

(g(θi,j |dj))2
. (26)

In case when the differentiation variables are the parameters of different mixture com-
ponents, the second derivative is:

∂2

∂θi,j,k∂θu,s,t
log h(θ|d) = − 1

h2(θ|d)
vi

q∏
m=1

g(θi,m|d(m))
g′k(θi,j |dj)
g(θi,j |d(j))

× (27)

×vu
q∏

m=1

g(θu,m|d(m))
g′t(θu,s|d(s))

g(θu,s|d(s))
= − 1

h2(θ|d)
ri(d)ru(d)

g′k(θi,j |d(j))

g(θi,j |d(j))

g′t(θu,s|d(s))

g(θu,s|d(s))
.

(28)
Corollary. In conditions of the Theorem, if for an observation responsibility of

some mixture component i is equal to 1, then among the second derivatives, only the
ones corresponding to the same mixture component and coordinate can differ from
zero.

Proof. Those derivatives which contain a term ri − r2
i become zero, and the fact

ri = 1 leads to ru = 0 for u 6= i, so only the second case (i = u, j = s) of the theorem
formulation can lead to a non-zero second order derivative.

The responsibility of an observation is equal to 1 (up to numerical precision) in
some 95% of cases in our experiments. Therefore second derivative matrices are very
often sparse, having block-diagonal structure, which follows from the Corollary. It
makes the meta-learning process for the Gaussian mixture models faster.

For the Gaussian mixture model with diagonal covariance matrices, the coordinate-
wise function g(θi,j |d) and its derivatives w.r.t. the parameters θi,j = [µi,j , σi,j ]

T is
given in the table 3.
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g(θi,j |d) (
√

2πσi,j)
−1e
−

(d(j)−µi,j)
2

2σ2
i,j

g′µ(θi,j |d(j))
d(j)−µi,j
σ2
i,j

g(θi,j |d(j))

g′σ(θi,j |d(j)) σ−1
i,j (

(d(j)−µi,j)2

σ2
i,j

− 1)g(θi,j |d(j))

g′′µµ(θi,j |d(j)) (− 1
σ2
i,j

+
(d(j)−µi,j)2

σ4
i,j

)g(θi,j |d(j))

g′′σσ(θi,j |d(j)) σ−2
i,j (2− 5

(d(j)−µi,j)2

σ2
i,j

+
(d(j)−µi,j)4

σ4
i,j

)g(θi,j |d(j))

g′′σµ(θi,j |d(j)) (−3
d(j)−µi,j
σ3
i,j

+
(d(j)−µi,j)3

σ5
i,j

)g(θi,j |d(j))

Table 3: Coordinate-wise likelihood function and its derivatives for the Gaussian mixture models.
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