
Randomized Smoothing for Near-Convex Functions in Context of Image
Processing

I. Minin, A. Vakhitov

Abstract— In this paper the problem of optimization of near-
convex functions which can be represented as a sum of strongly
convex and bounded functions is addressed. We have noted that
in several optimization problems in area of image processing
cost functions follow this model. Here we present an algorithm
how to minimize such functions using randomized smoothing
technique. The technique is an attractive theoretical justification
of global optimization properties of SPSA-like algorithms. We
present bounds on estimates error after finite number of steps,
asymptotic bounds, bounds on estimates’ variance and show
how the algorithm presented can robustly optimize a function
with many similar local minima.

I. INTRODUCTION

Research in the area of randomized algorithms of stochas-
tic approximation started in second half of XX century in
[1]–[4]. Randomization allowed to reduce the number of
function measurements needed to achieve certain quality of
minimum estimates [4] or even, in case of additional mea-
surement noise, achieve optimal convergence rate in general
class of zero-order stochastic approximation algorithms [2],
cancel out unknown but bounded measurement noise [3] or
smoothen non-differentiable functions [5].

Mostly, however, the research in the area was devoted to
local optimization, where there is one minimum which needs
to be found. Here we address a problem when there are
many local minima, however the global one (the smallest) is
of interest. If there is nothing known about the function, the
problem of optimization reduces to simple and very resources
consuming search in the whole area of parameters.

In this paper we assume that there exists a particular model
of the function, namely it is a sum of a strongly convex
and some another bounded function. We call such functions
“near-convex”. This assumption allows us to rely on global
properties of strongly convex functions. To differentiate a
“good” strongly convex function from “bad” corruption func-
tion, we use randomized smoothing technique. In the paper
of Yin [6], another type of globally convergent stochastic
approximation algorithms with noise injection resembling
simulated annealing algorithm are studied. In the paper
[7] the similar setting to ours is explored, namely global
optimization with SPSA algorithms without noise injection.
However, theoretical justification is not clear and the effects
reported are hard to reproduce, so the method proposed
seems to be less reliable than it could potentially be.

Smoothing is a result of convolution of the initial function
with some kernel, which can be implemented with the help of
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randomization. We restrict ourselves to a class of functions
f(x) being a sum f(x) = f0(x) + v(x) of strongly convex
function f0(x) and bounded function v(x) (we call them
near-convex). We show that this approach can be used in
applications of optimization in the area of image processing.

In papers of Katkovnik [1] the possibility of smoothing
a function in order to overcome local minima while min-
imizing with gradient-type procedures was mentioned but
from our point of view analysis of convergence and appli-
cability of the results to practical problems was up to now
missing. Recently a lot of interest in global minimization of
non-convex functions using averaging based on convolution
arose in physics. The Lennard-Jones problem is to find a
configuration of particles with global minimum of energy
[8], [9]. It is shown that a way to deal with this function
minimization is to smoothen it and then minimize a smooth
version [9].

There is a number of challenging problems in image pro-
cessing such as image restoration, registration, segmentation
e.t.c. which often require large-scale nonsmooth, nonconvex
optimization.

Image registration problem [10], [11] may be stated as:
given two images taken, for example, at different times, from
different devices or perspectives, the goal is to determine a
reasonable transformation, such that a transformed version of
the first image is similar to the second one. The applications
to this are stereovision and optical flow calculation [10],
reconstruction of objects and scenes from multiple views
[11], [12], etc.

There are two general types of cost functions used in
the context of image registration:sum of squared differences
between pixel intensities fSSD(x) =

∑
p∈W w(p)‖I(x +

p) − J(p)‖2 where p ∈ R2 is pixel of pattern J and I is
an image where the search for patttern is performed, w(p)
is some weighting function [10], or pixelwise correlation
fCOR =

∑
p∈W w(p)I(x + p)TJ(p). In image registration

mostly Newton-type procedures are used to optimize the cost
functions [11]. It is important to increase convexity region
of fSSD or fCOR in order to improve convergence. Usually
the method of pyramidal smoothing is used: images I and J
are smoothed with some kernel and the minimum is found,
then smoothing is repeated with smaller kernel support and
optimization is started from the previous optimum point, and
so on until convergence [11], [13]. However, this scheme has
no theoretical justifications from the side of optimization:
there is no closed-loop solution for the parameters of such an
algorithm in order to make it convergent in some particular
case, so that trial and error way is used.
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The algorithm proposed here aims to fill this gap and offer
theoretical ground to smoothing-based optimization of near-
convex functions. We assume some model of a cost function
and show how to get parameters of smoothing and gradient-
descent algorithm in order to make it convergent to the small
neighbourhood of a true minimum. We are going to present
an algotihm based on randomized averaging which will help
us to find a point close to true optimum of the initial function.
Because of the “corruption” we cannot find the true minimum
point anyhow. However, we will see that
• the lesser the “corruption”, the closer is the solution to

the true minimum;
• the higher strong convexity of the initial function, the

higher is the tolerance of the algorithm to “corruption”.
The article presents convergence conditions, analysis of

the speed of convergence of the estimates, analysis of con-
vergence of the estimates’ variance and experiments with
synthetic data and a real problem of image registration.
We will do the analysis for a fixed step type of algorithm,
because from our perspective it is more relevant to practice
[14].

II. PROBLEM SETTING

Assume that f(x) : Q ⊂ Rq → R is a non-convex
function, but Q is a convex set and

f(x) = f0(x) + v(x),

where f0(x) is differentiable, strongly convex with parameter
µ > 0:

f0(x) ≥ f0(y) + 〈∇f0(y), x− y〉+
µ

2
‖x− y‖2,

for all x, y ∈ Rq and its gradient is Lipschitz-continuous
with constant L > 0:

‖∇f0(x)−∇f0(y)‖ ≤ L‖x− y‖

and v(x) is a continuous function with properties defined
below.

The minimum of f0 is located at the point θ0:

θ0 = argmin f0(x).

The problem is to find a point θ∗ in εθ - neighbourhood of
θ0:

‖θ∗ − θ0‖ ≤ εθ,

where we denote euclidean norm as ‖ · ‖.

A. Averaging Kernel

We will use the averaging kernels to solve our problem.
The averaging kernel definition is based on potential averag-
ing operators from [1].

Definition. Averaging kernel of degree 1 is a function

h : Q ⊂ Rq → R, ∀u ∈ Qh(u) ≥ 0,

for which the following properties hold:∫
Q

h(u)u(i)du = 0;

∫
Q

h(u)du = 1,

and Q is open set, or Q is closed and a.s.

∀u ∈ ∂Q h(u) = 0.

Averaging kernels have a useful for gradient-based al-
gorithms property [1] holding for a very general class of
functions f and scalars b > 0:

∂

∂x

∫
Q

h(u)f(x− bu)du =
1

b

∫
Q

h′(u)f(x− bu)du,

where h′(u) is a gradient of h.
We will decompose the functions h and h′ as

h(u) = c(u)p(u), h′(u) = d(u)p(u).

Examples of averaging kernels suitable for this paper
taken from [1] are listed in the following table.

p(u) c(u) d(u)
1

(2π)q/2
e−‖u‖

2/2 1 −u
1

(2π)q/2
e−‖u‖

2/2 1 + q
2 −

‖u‖2
2 −(2 + q

2 −
‖u‖2
2 )u

We denote

h1 =

∫
Q

h(u)‖u‖, h2 =

∫
Q

h(u)‖u‖2.

B. “Corruption” Properties

Let us assume that v(x) is a differentable function as well.
(This assumption can be relaxed).

We assume also that there exists finite scalar functions
C1(b) > 0, C2(b) such that:

∀b > b0 |
∫
Q

h′(u)v(x− bu)du| < C1(b),

∫
Q

d2(u)v2(x± bu)du < C2(b).

III. ALGORITHM

Let us define parametric statistical gradient [1] as

η(x,N, b) =
1

Nb

N∑
j=1

ηj(x, b),

ηj(x, b) = d(uj)f(x− buj), d(uj) =
h′(uj)

p(uj)
, (1)

where p(·) is some probability density function, and uj are
sampled from corresponding distribution.

It is also possible to use another form of gradient estimate:

ηj(x, b) =
1

2
d(uj)

(
f(x− buj)− f(x+ buj)

)
, (2)

which is better in practice as we will see from the theorems
below and the simulation.

Starting with some initial point θ̂0,

θ̂n = θ̂n−1 − αnη(x,N, bn), (3)

where αn, bn are some scalar sequences.
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A. Properties of the algorithm

In the following section we denote fh =
∫
Q
h(u)f0(x −

bu)du, θ∗ is the minimum of fh, d2 = E‖u‖2d2(u). We will
analyze the properties of the smoothed function, convergence
of the algorithm, behavior of the variance of its estimates.

Lemma 1. When the properties for h and f0 listed above
hold, fh is a strongly convex function with constant µ and
its gradient has Lipschitz property with constant L.

Proof. Consider one of the equivalent formulations for a
definition of a strongly convex function f0 [15]:

∀x, y∀λ ∈ (0, 1) f0(λx+ (1− λ)y) ≤ λf0(x)+

+(1− λ)f0(y)− λ(1− λ)
µ

2
‖x− y‖.

This inequality is true for f0. Let us substitute x = x′ − bu,
y = y′ − bu, then multiply both sides of the inequality on
h(u) ≥ 0, and the integrate over u ∈ Q. We will get the
same inequality for fh.

The Lipschitz property can be checked directly using its
definition.

Theorem 1.
‖θ∗ − θ0‖ ≤

L

µ
bh1.

Proof. Using the fact that ∇fh(θ∗) = 0, we get∫
Q

h(u)∇f0(θ∗ − bu)−∇f0(θ∗)du = −∇f0(θ∗).

From the strong convexity of f0,

‖∇f0(θ∗)‖ ≥ µ‖θ∗ − θ0‖;

from the Lipschitz property of ∇f0,

‖
∫
Q

h(u)∇f0(θ∗ − bu)du−∇f0(θ∗)du‖ ≤∫
Q

h(u)‖∇f0(θ∗ − bu)du−∇f0(θ∗)‖du ≤ Lbh1;

So, we have
µ‖θ∗ − θ0‖ ≤ Lbh1,

and
‖θ∗ − θ0‖ ≤

L

µ
bh1.

Lemma 2. Variance of differentiation operators.
For the operator (1), variance of gradient estimate at point

x has a bound 1
NEd

2(u) 2
b2 f

2
0 (x− bu)+ 2

b2C2(b). In case of
operator (2),

E(gn − Egn)2 ≤
1

N

(
6d2L

2 − µ2)‖x− θ0‖2+

+(2C(b)L+ 6
L3

µ
bh1d2)‖x− θ∗‖+

L2

µ2
b2h21

)
.

Proof. In case of all operators due to the definition of
variance, for any sequence of independent variables ξi, i =
1 . . . N with equal mean Eξ

E(
1

N

∑
ξi − Eξ)2 =

1

N
E(ξ − Eξ)2.

In the same time, for the operator (1)

E(d(u)
1

b
f(x− bu))2 ≤ Ed2(u) 2

b2
f20 (x− bu) +

2

b2
C2(b).

For the operator (2),

E(d(u)
1

2b
(f(x+ bu)− f(x− bu)))2 ≤ Ed2(u) 3

4b2(
(f0(x+ bu)− f0(x− bu)))2 + v2(x+ bu) + v2(x− bu))

)
f0(x+ sbu) = f0(x) +

∫ 1

0

〈∇f0(x+ tsbu), sbu〉dt,

‖
∫ 1

0

〈∇f0(x+tsbu), sbu〉dt‖ ≤ Lb‖x−θ0‖‖u‖+
L

2
b2‖u‖2,

(f0(x+ bu)− f0(x− bu)))2 ≤ 2(4L2b2‖u‖2‖x− θ0‖2+

+L2b4‖u‖4)

E(d(u)
1

2b
(f(x+ bu)− f(x− bu)))2 ≤ 6d2L

2‖x− θ0‖2+

+
3

2b2
C2(b) ≤ 6d2L

2‖x−θ∗‖2+6
L3

µ
bh1d2‖x−θ∗‖+

L2

µ2
b2h21.

Also,

‖∇f̃(x)‖2 = ‖∇fh(x)‖2 + 2∇fh(x)∇vh(x)+

+‖∇vh(x)‖2 ≥ µ2‖x− θ∗‖2 − 2C(b)L‖x− θ∗‖.

As a result,

E(gn − Egn)2 ≤
1

N

(
6d2L

2 − µ2)‖x− θ0‖2+

+(2C(b)L+ 6
L3

µ
bh1d2)‖x− θ∗‖+

L2

µ2
b2h21

)
.

Theorem 2. Let f, f0, v, fh be as defined above.
When b0 > 0, if αn = α,

∃ε > 0 : ν = 2αµ− ε
2

2
−α2(

1

N
(6d2L

2−µ2)+L) ∈ (0, 1)

then the algorithm (3) with operator (2) converges to εθ-
neighbourhood of θ∗ in average, εθ = φ

ν , where

φ = α2 ε
−2

2

(
2
C1(b)

b
(1 + 2αL)+

+α
2C1(b)L+ 6L

3

µ bh1d2

N

)2

+
L2

µ2
b2h21 + b−2C2

1 (b).

Note. From the theorem statement we see that when N
grows, φ becomes less and the upper bound of estimation
error becomes lower. Also, we see that when b grows, terms
like C1(b)

b become less, but terms like L2

µ2 b
2h21 will grow.

This represents a tradeoff between accuracy and smoothing
of corruption function. Also, when µ grows, ν grows, so the
asymptotic bound also can be smaller when strong convexity
of the function becomes higher.

Proof.

‖θ̂n+1− θ0‖2 = ‖θ̂n− θ0−αgn(θ̂n)‖2 ≤ ‖θ̂n− θ0‖2− (4)

−2α〈gn(θ̂n), θ̂n − θ0〉+ α2‖gn(θ̂n)‖2,
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Engn(θ̂n) = ∇θ̂nfh(θ̂n) = ∇θ̂n

∫
h(u)f0(θ̂n − bu)+

+∇θ̂n

∫
h(u)v(θ̂n − bu)

∇
∫
h(u)v(θ̂n−bu) = −

∫
∂Q

h(u)v(x−bu) cos ̂(x, n(u))du+

+
1

b

∫
h′(u)v(θ̂n − bu);

According to the definition of h(u),∫
∂Q

h(u)v(x− bu) cos ̂(x, n(u))du = 0;

‖
∫
h′(u)v(θ̂n − bu)‖ ≤ C1(b).

〈
∫
h(u)∇f0(θ̂n − bu)du, θ̂n − θ∗〉 =

=

∫
〈h(u)∇f0(θ̂n − bu), θ̂n − θ∗〉du ≥

≥
∫
h(u)µ‖θ̂n − θ∗‖2du =

= µ‖θ̂n − θ∗‖2.

Then,
En{−2α〈gn(θ̂n), θ̂n − θ∗〉} ≤

≤ −2αµ‖θ̂n − θ∗‖2+

+2α
C

b
‖θ̂n − θ∗‖.

We can bound the last term of inequality (4) as

Eα2‖gn(θ̂n)‖2 = Eα2‖ 1

Nb

∑
ηj(θ̂n, b)‖2 =

Adding and subtracting ∇f̃(θ̂n) = ∇
∫
Q
h(u)f(θ̂n − bu)du,

we get

= Eα2‖ 1

Nb

∑
ηj(θ̂n, b)−∇f̃(θ̂n) +∇f̃(θ̂n)‖2.

Using the fact that E 1
Nb

∑
ηj(θ̂n, b) = ∇f̃(θ̂n) we get

Eα2‖gn(θ̂n)‖2 = α2‖∇f̃(θ̂n)‖2+

+Eα2‖ 1

Nb

∑
ηj(θ̂n, b)−∇f̃(θ̂n)‖2.

Considering the first term,

‖∇f̃(θ̂n)‖2 = ‖∇fh(θ̂n)‖2 + 2〈∇fh(θ̂n),∇vh(θ̂n)〉+

+‖∇vh(θ̂n)‖2,

where we denoted fh(x) =
∫
Q
h(u)f0(x − bu)du, ∇vh =

1
b

∫
Q
h′(u)v(x− bu)du. From the properties of f0 and v,

‖∇f̃(θ̂n)‖2 ≤ L‖θ̂n−θ∗‖2+2LC1(b)b
−1‖θ̂n−θ∗‖+b−2C2

1 (b).

From the Lemma 2 we get the bound for the last term.
Summarizing, we get

E‖gn(θ̂n)‖2 ≤ (
1

N
(6d2L

2 − µ2) + L)‖θ̂n − θ∗‖2+

+α2(
1

N
(2C1(b)L+6

L3

µ
bh1d2)+ 2LC1(b)b

−1)‖θ̂n− θ∗‖+

+
L2

µ2
b2h21 + b−2C2

1 (b).

The term with first degree of estimation error using Cauchy-
Bunyakovsky-Schwarz inequality with arbitrary ε > 0 is
bound as

α
(
2
C1(b)

b
(1+2αL)+α

2C1(b)L+ 6L
3

µ bh1d2

N

)
‖θ̂n−θ0‖ ≤

≤ ε2

2
‖θ̂n − θ∗‖2 + α2 ε

−2

2

(
2
C1(b)

b
(1 + 2αL)+

+α
2C1(b)L+ 6L

3

µ bh1d2

N

)2

.

Finally, we have an inequality

‖θ̂n+1−θ0‖2 ≤ (1−2αµ+
ε2

2
+α2(

1

N
(6d2L

2−µ2)+L))·

·‖θ̂n − θ∗‖2 + α2 ε
−2

2

(
2
C1(b)

b
(1 + 2αL)+

+α
2C1(b)L+ 6L

3

µ bh1d2

N

)2

+
L2

µ2
b2h21 + b−2C2

1 (b).

Denoting the coefficient of second degree of error as 1 −
νn and the rest term as φn and applying the unconditioned
expectation we get

E{‖θ̂n+1 − θ0‖2} ≤ (1− νn)E{‖θ̂n − θ0‖2}+ φn.

We have νn = ν, φn = φ and

lim
n→∞

E{‖θ̂n+1 − θ0‖2} ≤
φ

ν
,

while for the n-th estimate we have the inequality

E{‖θ̂n+1−θ0‖2} ≤ (1−ν)nE{‖θ̂0−θ0‖2}+
φ
(
1− (1− ν)n

)
ν

.

Next we will analyze the variance of estimates.
Theorem 2. Let f, f0, v, fh be as defined above.
When b0 > 0, if αn = α,

∃ε > 0 : ν = 2αµ− α2

N

(
6d2L

2 − µ2)− ε2

2
∈ (0, 1)

then the variance of estimates of the algorithm (3) with
operator (2) has asymptotic upper bound:

lim
n→∞

E‖θ̂n − Eθ̂n‖2 ≤
φ

ν
,

φ =
ε−2

2
α2(α(2C1(b)L+ 6

L3

µ
bh1d2)+

+4
C1(b)

b
) +

α2L2

µ2
b2h21.

and is bounded as

σ2
n+1 ≤ (1− ν)n−1σ2

1 + (1− (1− ν)n−1)φ
ν
,

where σ1 is the variance of θ̂1.
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Proof.

E‖θ̂n+1 − Eθ̂n+1‖2 = E‖θ̂n − αgn(θ̂n)−

−Eθ̂n + αEgn(θ̂n)‖2 = E‖θ̂n − Eθ̂n‖2−

−2αE〈gn(θ̂n)− Egn(θ̂n), θ̂n − Eθ̂n〉+

+α2E‖gn(θ̂n)− Egn(θ̂n)‖2.

For the second term the following inequality holds:

−2αE〈gn(θ̂n)− Egn(θ̂n), θ̂n − Eθ̂n〉 =

−2α
(
E〈gn(θ̂n)− gn(Eθ̂n), θ̂n − Eθ̂n〉+

+E〈gn(Eθ̂n)− Egn(θ̂n), θ̂n − Eθ̂n〉
)
.

Since the last term is 0 because of independence of θ̂n
and gn(Eθ̂n), we need only to bound the first term. We’ll
use then the well-known inequality for the strongly convex
functions:

−2αE〈gn(θ̂n)− gn(Eθ̂n), θ̂n − Eθ̂n〉 =

−2α〈∇
∫
Q

h(u)f0(θ̂n−bu)du−∇
∫
Q

h(u)f0(Eθ̂n−bu)du,

θ̂n − Eθ̂n〉 − 2αb−1E〈
∫
Q

h′(u)v(θ̂n − bu)du−

−
∫
Q

h′(u)v(Eθ̂n − bu)du, θ̂n − Eθ̂n〉 ≤

−2αµE‖θ̂n − Eθ̂n‖2 + 4α
C1(b)

b
E‖θ̂n − Eθ̂n‖.

We denote by σ2
n variance of estimates on the n-th step

of estimation process. We get:

σ2
n+1 ≤ (1− 2αnµ+

α2

N

(
6d2L

2 − µ2))σ2
n+

+α(α(2C1(b)L+ 6
L3

µ
bh1d2) + 4

C1(b)

b
)σn +

α2L2

µ2
b2h21.

Using the inequality with ε as in the previous theorem’s
proof, we get

σ2
n+1 ≤ (1− 2αµ+

α2

N

(
6d2L

2 − µ2) +
ε2

2
)σ2
n+

+
ε−2

2
α2(α(2C1(b)L+6

L3

µ
bh1d2)+4

C1(b)

b
)+

α2L2

µ2
b2h21.

So, the analogous to theorem 1 result for the variances
follows.

IV. EXPERIMENTS

A. Real data

We have simulated our algorithm with an image from hub-
blesite.org representing a picture made by Hubble telescope
(Fig. 1).

We have used fSSD, b = 2.0, αn = 2
(n+1)0.6 , N = 4, and

stopping condition ||θ̂n+1 − θ̂n|| < 0.01 was satisfied after
200 iterations. The initial point was θ̂0 = (100, 30)T .

Fig. 1. Image of Sombrero galaxy, the pattern is marked by red square,
initial estimate of the pattern position is marked by blue square.

B. Simulated data

To test the algorithm we use a Griewank test function from
[16] also used in [7]:

f(x) = cos(x(1) − 100)cos(x(2) − 100)/
√
2+

+
(
(x(1) − 100)2 + (x(2) − 100)2

)
/4000− 1.

The function is drawn at the Fig. 2. The strongly convex com-
ponent has a very small slope towards a point (100, 100)T

which can be noted by observing the height of the peaks
while corruption function has comparatively big scale. The
minimum is at the point θ = (100, 100)T .

Fig. 2. Griewank function

In our experiments we used b = 20 and Gaussian kernel,
as in the first line in the table above. The smoothed version
of the function f is drawn at the Fig. 3. The function is

837



convex and looks almost like strongly convex. The ran-
domized algorithm presented in the paper on every step
uses an estimate of the gradient of this smoothed function.
The estimate converges to the true value as the number of
function measurements per iteration N grows.

Experimenting with this function, we found that the algo-
rithm proposed in [7] (classical SPSA) diverges quite often
even when we try to choose the best parameters of the
algorithm. Algorithm used here for N = 1 resembles SPSA
used by Maryak and Chin. Increasing N we can benefit from
better quality of the gradient estimate while increasing the
number of function measurements which is impossible in
classical SPSA formulation [3], [4]. When function mea-
surements are too expensive it is not recommended, but
nevertheless if reliable convergence is needed, some sacrifice
in speed can be tolerated.

In the simulation we use the following parameters:

αn 400/(n+ 1)0.3

b 20
N 500

We terminate the iterates when

‖θ̂n − θ̂n−1‖ < 0.02.

The results of 50 runs from initial point randomly chosen
from the interval [−200; 400]x[−200; 400] are presented in
the following table, where the final minimum estimate is
denoted as θ̂.

average ‖θ̂ − θ‖ 1.471
max ‖θ̂ − θ‖ 4.403

average number of iterations 96.1

Fig. 3. Smoothed Griewank function with b = 20

V. CONCLUSION

We have shown simple theoretical justification for global
optimization of non-convex functions using SPSA-type algo-
rithm and provided the simulation that shows flexibility and

robustness of our approach comparing to classical SPSA.
Smoothing (averaging) allows to get rid of corruption func-
tion and optimize only the most important strongly convex
component of the function. From the theorem proved in the
paper follows that absolute value of corruption can be higher
for functions with higher degree of strong convexity; in the
same time, when there is less additive corruption, minimum
of strongly convex component is found more accurately.
New algorithm allows to benefit from the tradeoff between
amount of function measurements and better convergence
due to higher quality of gradien estimates by adjusting the
parameter N .

We would like to continue the chosen research direction
with analysis of Newton-type procedures, smoothing of
second derivatives, and also compare performance of new
and traditional algorithms for smoothing in the context of
image registration. Important problems not covered here are
also optimal choice of averaging kernel and N . We’d like to
thank the anonymous Reviewers for valuable comments and
suggestions.
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