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Abstract— Simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm is also often referred as a Kiefer-
Wolfowitz algorithm with randomized differences. Algorithms
of this type are widely applied in field of intelligent control
for optimization purposes, especially in a high-dimensional
and noisy setting. In such problems it is often important
to track the drifting minimum point, adapting to changing
environment. In this paper application of the fixed gain SPSA
to the minimum tracking problem for the non-constrained
optimization is considered. The upper bound of mean square
estimation error is determined in case of once differentiable
functional and almost arbitrary noises. Numerical simulation of
the estimates stabilization for the multidimensional optimization
with non-random noise is provided.

I. INTRODUCTION

The Kiefer-Wolfowitz algorithm with random differences

belongs to the class of SPSA-type algorithms. Algorithms

of this type have found numerous applications in control

theory and become vital part for many intelligent control

applications, such as neural networks learning, clustering,

fuzzy programming, etc. In the area of fuzzy logic SPSA

is used for solving following fuzzy programming models:

fuzzy expected value model, fuzzy chance-constrained pro-

gramming model and fuzzy dependent-chance programming

model [1]. It also often uses fuzzy programming to estimate

the value of the cost function (see for example [2]). In

neural networks SPSA could be either applied during the

learning process [3]–[5], or it can take neural network as

a function approximation and optimize it (see for example

[6]). In case of intelligent control time-varying systems are

often considered, and because of that we would like to

present here the modification of the SPSA-type algorithm

which suits for such problems. For the Kiefer-Wolfowitz

algorithm with randomized differences with a fixed step size

we prove stabilization of its estimates while tracking the

drifting minimum point. However, this result is very general

and can be applied in other areas as well.

Problem of functional optimization arises in many prac-

tical cases. While in some cases extreme points could be

found analytically, many engineering applications deal with

unknown functional, which can only be measured in selected

points with possible noise. In some cases functional itself

could vary over time and its extreme points could drift. In

this case problem setting could be different, depending on

goals of optimization and possible measurements. In general,
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there are two different variants of a function behavior over

time - it has a limit function, to which it tends when time

goes to infinity, or there is no such function [7]. In this paper

we consider the second variant.

Non-stationary optimization problems can be described

in discrete or continuous time. In our paper we consider

only discrete time model. Let f(x, n) be a functional we

are optimizing at the moment of time n (n ∈ N). In book

[8] Newton method and gradient method are applied to

problems like that, but they are applicable only in case of

two times differentiable functional and l < ∇2fk(x) < L.

Both methods require possibility of direct measurement of

gradient in arbitrary point.

In real world measurement always contains noise. Some-

times the algorithms that perfectly solve the problem on

paper do not provide good estimates in practical cases. Ro-

bustness is important in engineering applications. For prob-

lems with noise the Robbins-Monro and Kiefer-Wolfowitz

stochastic approximation algorithms were developed in

1950s. The history of development of such algorithms is

described in [9], [10]. Common approach used in these

algorithms can be formalized in a following way:

θ̂n+1 = θ̂n − αnĝn(θ̂n), (1)

where {θ̂n} —is the sequence of extreme points estimates

generated by algorithm, gn — pseudo-gradient (replacing

the gradient from Newton method). Pseudo-gradient has

to approximate the true gradient. The important properties

of algorithms described in this form are simplicity and

recurrence. Because of these properties they are often applied

in different areas.

Algorithms of the SPSA-type with one or two measure-

ments per each iteration appeared in papers of different

researchers in the end of the 1980s [11]–[14]. Later in the

text we will refer to this class of algorithms as SPSA for

simplicity. These algorithms are known for their applicability

to problems with almost arbitrary noise [10]. The measure-

ment noise should be bounded and only slightly correlated

with perturbation on each iteration. Moreover, the number

of measurements made on each iteration is only one or two

and is independent from the number of dimensions of the

state space d. This property sufficiently increases the rate

of convergence of the algorithm in multidimensional case

(d >> 1), comparing to algorithms, that use direct estimation

of gradient, that requires 2d measurements of function in

case if direct measurement of function gradient is impossible.

Detailed review of development of such methods is provided

in [10], [15].
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Stochastic approximation algorithms were initially proven

in case of the stationary functional. The gradient algorithm

for the case of minimum tracking is provided in [8], how-

ever the stochastic setting is not discussed there. Further

development of these ideas could be found in paper [7],

where conditions of drift pace were relaxed. The book [9]

uses the ordinary differential equations (ODE) approach to

describe stochastic approximation. It addresses the issue

of applications of stochastic approximation to tracking and

time-varying systems in a following way: it is proven there

that when the step size goes to zero in the same time as the

number of the algorithm’s iterates over a finite time interval

tends to infinity, then the minimum estimates tend to true

minimum values. This is not the case here, since we consider

the number of iterates per unit of time to be fixed.

In the most of the cases, SPSA algorithm applied with

coefficients αn and βn tending to zero. This is not applicable

however in tracking case, since the dynamic nature of the

observed system. In our work we use fixed gain version

of algorithm. Coefficients α and β are chosen a-priory and

not changed during the execution of algorithm. Properties

of fixed gain algorithms for tracking under very general

conditions are discussed in [16]. The fixed gain SPSA

applied to discrete set optimization problem is considered in

[17]. However, in both of these articles all proofs are given

only for limited class of noise. In our paper we proof the

applicability of algorithm in conditions of almost arbitrary

noise.

In this paper we consider application of simultaneous per-

turbation stochastic approximation algorithm to the problem

of tracking of the functional minimum. SPSA algorithm does

not rely on direct gradient measurement and is more robust

to non-random noise than gradient-based methods mentioned

earlier. The most closely case was studied in [18], but we

do not use the ODE approach and we establish more wide

conditions for the estimates stabilization. In the following

section we will give the problem statement that is more

general than in [7], [8], in the third section we provide the

algorithm and prove its estimates mean squared stabilization.

In the last section we illustrate the algorithm, applying it to

minimum tracking in a particular system.

II. PROBLEM STATEMENT

Consider the problem of minimum tracking for average

risk functional:

f(x, n) = Ew{F (x, w, n)} → min
x

, (2)

where x ∈ R
d, w ∈ R

p, n ∈ N, Ew{·} — mean

value conditioned on the minimal σ-algebra in which w is

measurable.

The goal is to estimate θn — minimum point of functional

f(x, n), changing over time:

θn = argminxf(x, n).

Let us assume that on the iteration we can do a following

measurement:

yn = F (xn, wn, n) + vn, n = 1, 2, . . . (3)

where xn are arbitrary measurement points chosen by al-

gorithm, wn are random values, that are non-controlled

uncertainty and vn are observation noises.

Time in our model is discrete and implemented in number

of iteration n.

To define the quality of estimates we will use the following

definition:

D e f i n i t i o n 1: [19] A sequence of vector es-

timates {θ̂k, k ≥ 0} of true vector sequence {θk, k ≥ 0}
defined on the basic probability space {Ω,F , P} is called

LP -stable (p > 0) if

sup
k≥0

E1/p‖θk − θ̂k‖p = L̄ < ∞.

Further we will consider generation of sequence of es-

timate {θ̂n} for problem (2), for which there exists some

L̄ < ∞ satisfying the definition 1 for p = 2, in following

conditions.

We will assume that drift of the minimum point is limited

in following sense:

(A) ‖θn − θn−1‖ ≤ A.

Function f(·, n) is a strictly convex function for each n:

(B) 〈∇f(x, n), x − θn〉 ≥ µ‖x − θn‖2.

Gradient ∇F (·, w, n) is Lipschitz with constant M ,

∀n, ∀w:

(C) ‖∇F (x, w, n) −∇F (y, w, n)‖ ≤ M‖x − y‖;
En‖∇θn

F (θn, w, n)‖2 ≤ B < ∞

(D) Average difference of function F (x, ·, n) in any point

x for moments n and n + 1 is limited in a following way:

Ew1,w2
|F (x, w1, n+1)−F (x, w2, n)|2 ≤ C‖x− θn‖2 +D.

(E) Local Lebesgue property for the function

∇F (w, x): ∀x ∈ R
d ∃ neigbourhood Ux such that ∀x′ ∈ Ux

‖∇F (w, x)‖ < Φx(w) where Φx(w) : R
p → R is integrable

by w: Ew{Φx(w)} < ∞
The last condition is necessary for the commutation of

differentiation and integration operations, that is used to

change order of expectation and gradient in the proof of

the theorem. For more discussions about such properties see

[20].

(F) For the observation noise vn the following condi-

tions are satisfied:

|v2n − v2n−1| ≤ σv,

or if it has statistical nature then:

E{|v2n − v2n−1|2} ≤ σ2
v .

Here we should make several notes: 1). Sequence {vn}
could be of non-statistical but unknown deterministic nature.

2). Constraint (A) allows both random and deterministic drift.

In certain cases Brownian motion could be described without
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tracking. Tracking is needed when there is both determined

and non-determined aspects of drift. Similar condition is

introduced in [8], it is slightly relaxed in [7]. For example it

could be relaxed in a following way:

(A′) θn = A1θn−1 + A2 + ξn,

where ξn is random value.

In this paper we will only consider drift constraints in form

(A). Mean square stabilization of estimation under condition

(A) implies its applicability to wide variety of problems.

III. ALGORITHM

In this section we are introducing a modification of SPSA

algorithm provided by Chen et al [21], which takes one

perturbed and one non-perturbed measurement on each step.

Let perturbation sequence {∆n} be an independent se-

quence of Bernoulli random vectors, with component values

±1/
√

d with probability 1

2
. Let vector θ̂0 ∈ R

d be the

initial estimation. We will estimate a sequence of minimum

points {θn} with sequence {θ̂n} which is generated by the

algorithm with fixed stepsize:


















































x2n = θ̂2n−2 + β∆n, x2n−1 = θ̂2n−2,

yn = F (xn, wn, n) + vn,

θ̂2n = θ̂2n−2 − α
β ∆n(y2n − y2n−1),

θ̂2n−1 = θ̂2n−2.

(4)

(G) We will further assume that random values ∆n

generated by algorithm are not dependent on θ̂k, wk , θ̂0

and on vk (if they are assumed to have random nature) for

k = 1, 2, . . . , 2n.

IV. MEANSQUARE STABILIZATION FOR
ALGORITHM ESTIMATES

Let us define H = 2αβM + 4A + 12α2

β2 AC Denote L =

8A2 + 12α2(M2β2 + B) + 6α2

β2 (CA2 + D + σ2
v).

T h e o r e m 1: Assume that conditions (A)–(G) on

functions f , F and ∇F and values θn, θ̂n, vn, wn, yn and

∆n are satisfied. Let K and δ > 0 be constants satisfying

following condition:

K = 2αµ − 6
α2

β2
C > 0. (5)

Let K̄ = 1 − K + δH < 1. Then estimates provided by

the algorithm (4) stabilize in mean squares and following

inequality holds:

E{‖θn − θ̂n‖2} ≤ K̄n‖θ0 − θ̂0‖2 +
(L + H/δ)(1 − K̄n)

1 − K̄
.

(6)
Note that Theorem 1 provides asymptotically effective

value for the estimates:L̄ =
√

(L + H/δ)/(K − δH). This

value can be minimized by δ, so taking δ∗ = minδ L̄ we

achieve L̄∗ =
√

H2+KL+H
K .

Conditions (A)–(C),(E)–(G) are standard for SPSA algo-

rithms ge. Earlier the proof of the similar theorem was given

in [22] with more strict conditions. See the proof of Theorem

1 in appendix.

The condition (5) on α can be satisfied only when in-

equality 0 < α < µβ2

3C is true. It follows from the result

of the Theorem 1 that E{‖θn − θ̂n‖2} ≤ O(A2

α ) (α → 0)
which leads to a simple decision rule: to presume the upper

bound α should tend to zero with the same pace as A2. α
can be arbitrarily close to 0, which diminishes the effects of

the gradient approximation bias and the noise.

To build the upper bound of the algorithm’s estimates error

using Theorem 1, it is needed to find α and β satisfying the

condition (5), then to find δ which gives minimum value

of the fraction L
1−K . Using the resulting bound obtained, it

is possible to reduce it by applying the ideas concerning the

relation of α and dreif parameters such as A and the function

parameters such as M or µ. The resulting estimates behavior

will be the trade-off between the tracking ability and noise

sensitivity. The similar problem of algorithm parameters

choosing was studied in [23] for the same algorithm but in

the linear case.

V. EXAMPLES

Simple practical application of the algorithm (4) is estima-

tion of the multidimensional moving point coordinates when

only information about distance from arbitrary point to the

moving point is available with additive noise. As a result

of Theorem 1, the algorithm (4) provides the point estimate

in case of limited drift of the point and somehow limited

observation noise. Numerical examples given in this section

illustrate a solution of this problem.

Consider 2 dimensional case, when drift model is de-

scribed with formula θn = θn−1 + ζ, where ζ is uniformly

distributed on the sphere: ‖ζ‖ = 1. We will optimize

function that measures square of the distance to the point

F (x, w, n) = f(x, n) = ‖x− θn‖2. Obviously, this function

satisfies the conditions of the theorem. Measurements on

each step are made with extra noise yn = f(xn, n) + vn,

where vn ∈ (−1, 1). Noise vn is generated according the fol-

lowing law v2i = 1− (i mod 3) for even steps and v2i−1 =
1 − 3 ∗ (i mod 7) for odd. In this case function parameters

are A = 0, 1, M = 2, C = 0, 04,D = 0, 0004,B = 0,

µ = 2. Then K = 2αµ − 6α2

β2 C = 4α − 0, 24α2

β2 > 0 which

is true for α = 1/36, β = 1/2. As for the estimates error

bound, H = 2αβM + 4A + 12α2

β2 AC = 0, 09,K ≈ 0, 11,

L = 8A2 +12α2(M2β2 +B)+6α2

β2 (CA2 +D+σ2
v) ≈ 0, 1,

L̄ =
√

H2+KL+H
K ≈ (

√
0, 0081 + 0, 01 + 0, 09)/0, 11 = 2.

The drift of the point is shown on Fig. 1 with a bold line.

Dash line illustrates estimate drift generated by (4). Initial

estimate was taken as θ̂0 = (−5,−5)T . Estimation error is

shown at the Fig. 2.

The second example is a hundred dimensional drift

(Fig. 3). In this case standard algorithms that are based on
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gradient vector estimation are not applicable since it takes

200 iterations to build the approximation. So the gradient

method error would be 200 multiplied by the drift speed.

In our example we have drift speed 2 on each iteration and

error of the method holds on level 150, which is much lower

than the optimistic estimate for classical algorithm.

VI. CONCLUSION

In our work we apply the SPSA-type algorithm to the

problem of extreme point tracking with almost arbitrary

noise. Method does not require possibility of direct gradient

measurement, needs only 2 function measurement on each

iteration and once differentiable function. Drift is only as-

sumed to be limited, which includes random and directed

drift. It was proven that the estimation error of this algorithm

is limited with constant value. The modeling was performed

on a multidimensional case.

The authors want next to prove more precise boundaries

of the estimation error. It could be also interesting to modify

the algorithm to work with unknown polynomial drift, using

the technique of polynomial fitting demonstrated in [24]. It

would sufficiently relax the conditions of algorithm appli-

cability. It could be also interesting to consider converging

sequence of functions and apply algorithm for precise esti-

mation of the limit minimum point

APPENDIX

Proof of the Theorem 1. Proof: Let errn−1 =
θ̂2n−2 − θ2n−2, driftn = θ2n − θ2n−2, stepn = α

β (y2n −
y2n−1)∆n.

According to (4) and condition (A) we can bound

‖errn‖ = ‖θ̂2n − θ2n‖ as following:

‖errn‖2 ≤ ‖errn−1‖2 + ‖driftn‖2 + ‖stepn‖2+

+2〈driftn, stepn〉−2〈driftn, errn−1〉−2〈stepn, errn−1〉 ≤

≤ ‖errn−1‖2 + A2 + ‖stepn‖2 + 2〈stepn, driftn〉− (7)

−2 < driftn, errn−1〉 − 2〈errn−1, stepn〉.
1. According to observation model (3) for last term we have

−〈errn−1, stepn〉 =

= −〈errn−1,
α

β
∆n(F (θ̂2n−2 + β∆n, w2n, 2n)−

−F (θ̂2n−2, w2n−1, 2n− 1) + v2n − v2n−1)〉.
Let us denote expectation conditioned on random val-

ues θ1 . . . , θn−1, θ̂1, . . . , θ̂n−1 as En{·}. Applying this

operator to last statement, we get (adding and extracting

F (θ̂2n−2, w2n, 2n)) the following inequality:

En{−〈errn−1, stepn〉} = −〈errn−1,
α
β En{∆n

(F (θ̂2n−2 + β∆n, w2n, 2n) − F (θ̂2n−2, w2n, 2n))}〉−
−〈errn−1,

α
β En{∆n(F (θ̂2n−2, w2n, 2n)−

−F (θ̂2n−2, w2n−1, 2n − 1))}〉.
(8)

Here we use En{∆n(v2n − v2n−1)} = 0. Consider the

difference under En{·} in first term (8). Taking into account

presentation of F (θ̂2n−2 + β∆n, w2n, 2n) as Taylor series,

we conclude

∆n(F (θ̂2n−2 + β∆n, w2n, 2n) − F (θ̂2n−2, w2n, 2n)) =

∆n〈∇F (θ̂2n−2 + γ1β∆n, w2n, 2n), β∆n〉 =

∆n(〈∇F (θ̂2n−2, w2n, 2n), β∆n〉 − 〈∇F (θ̂2n−2, w2n, 2n)−
∇F (θ̂2n−2 + γ1β∆n, w2n, 2n), β∆n〉),
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where γ1 ∈ (0, 1). As a result for first term in (8), applying

(B), (C), (E), we get

−〈errn−1,
α
β En{∆n(F (θ̂2n−2 + β∆n, w2n, 2n)−
−F (θ̂2n−2, w2n, 2n))}〉 ≤

≤ −α〈errn−1,∇f(θ̂2n−2, 2n)〉 + Mαβ‖errn−1‖ ≤
≤ −αµ‖errn−1‖2 + αβM‖errn−1‖.

(9)

For second term in (8), taking into account independence of

∆n from w2n and w2n−1, we derive:

−〈errn−1,
α
β En{∆n(F (θ̂2n−2, w2n, 2n)−

−F (θ̂2n−2, w2n−1, 2n − 1))}〉 =

= 〈errn−1,
α
β En{∆n(F (θ̂2n−2, w2n, 2n)−

−F (θ̂2n−2, w2n−1, 2n − 1))} = 0.

(10)

Finally, −En{〈errn−1, stepn〉} ≤ −αµ‖errn−1‖2 +
αβM‖errn−1‖.
2. Consider En{〈stepn, driftn〉}. We will use a simple

estimate as follows and reduce the step of proof to the next

one:

2En{〈stepn, driftn〉} ≤ En‖stepn‖2 + 4A2.

3. Consider En‖stepn‖2. Let us estimate some terms as

follows:

En‖F (θ̂2n−2 + β∆n, w2n, 2n) − F (θ̂2n−2, w2n, 2n)‖2

≤ ‖〈∇xF (θ̂2n−2 + γβ∆n, w2n, 2n), β∆n〉‖2 ≤
≤ 2

(

‖∇xF (θ̂2n−2 + γβ∆n, w2n, 2n) −∇xF (θ̂2n, w2n, 2n)‖2+

‖∇xF (θ̂2n, w2n, 2n)‖2
)

‖β∆n‖2 ≤ 2(M2β2 + B)β2;

En‖F (θ̂2n−2, w2n, 2n) − F (θ̂2n−2, w2n−1, 2n − 1)‖2 ≤
C‖θ̂2n−2 − θ2n−1‖2 + D ≤

C‖errn−1‖2 + 2AC‖errn−1‖ + CA2 + D.

Using properties (C), (D), we can estimate En‖stepn‖2 as

follows:

En‖stepn‖2 ≤ α2

β2 (F (θ̂2n−2 + β∆n, w2n, 2n)

−F (θ̂2n−2, w2n, 2n) + F (θ̂2n−2, w2n, 2n)

−F (θ̂2n−2, w2n−1, 2n − 1) + v2n − v2n−1)
2 ≤

≤ 3α2

β2 (2β2(M2β2 + B) + C‖errn−1‖2

+2AC‖errn−1‖ + CA2 + D + σ2
v)

Summing previous inequality, evaluating term

‖2〈driftn, errn−1〉‖ ≤ 4A‖errn−1‖ and taking into

account formula for H , we derive

En{‖errn‖2} ≤ ‖errn−1‖2(1 − 2αµ + α2

β M + α2

β2 C)+

+2‖errn−1‖H + A2 + 2αβAM + 2α
β σvA+

+α2

β2 ((β2M + D)2 + σ2
v + 2(β2M + D)σv).

Using the inequality 2H‖errn−1‖ ≤ ‖errn−1‖2δ + H2

δ ,
∀δ > 0, we obtain

En{‖errn‖2} ≤ ‖errn−1‖2(1 − 2αµ + α2

β M + α2

β2 C + δ)+

+H2

δ + A2 + 2αβAM + 2α
β σvA+

+α2

β2 ((β2M + D)2 + σ2
v + 2(β2M + D)σv).

Futher we choose 0 < δ < 2αµ− α2

β M − α2

β2 C. Having such

constants δ, H, L we get En{‖errn‖2} ≤ K‖errn−1‖2 +L.

And with applying the unconditional expectation we finally

have (6).
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Fig. 1. 2-dimensional point drift (solid line) and estimation process (dashed
line)
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Fig. 2. 2-dimensional point drift: estimates error (solid line)
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Fig. 3. 100-dimensional point drift: estimates error (solid line)
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