
Received January 7, 2019, accepted January 30, 2019, date of publication February 25, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901584

Learnable Line Segment Descriptor
for Visual SLAM
ALEXANDER VAKHITOV AND VICTOR LEMPITSKY
Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
Samsung AI Center, Moscow, Russia

Corresponding author: Alexander Vakhitov (alexander.vakhitov@ gmail.com)

This work was supported by the Russian MES Grant RFMEFI61516X0003.

ABSTRACT Traditionally, the indirect visual motion estimation and simultaneous localization and
mapping (SLAM) systems were based on point features. In recent years, several SLAM systems that use
lines as primitives were suggested. Despite the extra robustness and accuracy brought by the line segment
matching, the line segment descriptors used in such systems were hand-crafted, and therefore sub-optimal.
In this paper, we suggest applying descriptor learning to construct line segment descriptors optimized
for matching tasks. We show how such descriptors can be constructed on top of a deep yet lightweight
fully-convolutional neural network. The coefficients of this network are trained using an automatically
collected dataset of matching and non-matching line segments. The use of the fully-convolutional network
ensures that the bulk of the computations needed to compute descriptors is shared among the multiple line
segments in the same image, enabling efficient implementation. We show that the learned line segment
descriptors outperform the previously suggested hand-crafted line segment descriptors both in isolation
(i.e., for the subtask of distinguishing matching and non-matching line segments), but also when built into
the SLAM system. We construct a new line based SLAM pipeline built upon a state-of-the-art point-only
system. We demonstrate generalization of the learned parameters of the descriptor network between two
well-known datasets for autonomous driving and indoor micro aerial vehicle navigation.

INDEX TERMS Feature descriptors, line segments, robotic perception, simultaneous localization and
mapping, SLAM.

I. INTRODUCTION
Many, perhaps most, robots operate in the environments
that are created or heavily modified by humans, such as
building interiors or city streets. Robust visual navigation
and the associated task of visual simultaneous localization
and mapping (SLAM) in such environments is therefore
a crucial task. Most practically-used SLAM systems these
days are based on point features. While point features are
well-studied and are relatively easy to handle mathemat-
ically and algorithmically, parts of human-modified envi-
ronments often have insufficient number of point features
that are easy to track. At the same time, human-modified
environments usually contain visually-distinctive straight line
segments that can be detected and matched from multiple
viewpoints as the robot moves in the environment. In such
cases, the incorporation of line matching is able to boost

The associate editor coordinating the review of this manuscript and
approving it for publication was Yang Tang.

the accuracy and robustness of motion estimation or SLAM
considerably [1]–[4].

To match line segments across frames, a line segment
descriptor, i.e. a function that maps the appearance of a
line segment into a high-dimensional space suitable for
distance-based matching is required. Importantly, a good line
segment descriptor should be robust to the change of the
endpoints, i.e. the descriptors for pairs of the overlapping
segments of the same line should be similar. Under such
condition, matching line segments can benefit a SLAM sys-
tem as opposed to relying on point feature matching alone.
Previous works use hand-crafted line segment descriptors
such as the Line Band descriptor (LBD) in [5] or the scale-
invariant mean-standard deviation line segment descriptor
(SMLSD) in [6]. The handcrafted line descriptors are inspired
by SIFT and work well in well-textured scenes but may be
useless when used for repetitive and low-textured scenes.

Existing line descriptors are based on popular scale-
invariant feature transform (SIFT) point descriptors [7].

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39923

https://orcid.org/0000-0002-1108-1948

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

While SIFT is a highly successful technique, its accuracy
for point matching has been surpassed by descriptors based
on machine learning [8]–[13]. The idea behind them is to
collect a dataset of matching and non-matching feature pairs
and use such pairs to learn the parameters of the descriptor
function in a discriminative way. While initial learning-based
architectures were relatively shallow [8]–[10], the recent
ones [11], [12] use gradient-based learning to train deeper
architectures using Siamese architectures [13] and related
loss functions. In general, learning-based descriptors are able
to improve the accuracy and robustness of visual matching
compared to SIFT and related hand-crafted techniques by
better exploiting the statistics of visual data.

In this work, we show that learning-based deep descrip-
tors can advance the accuracy of matching for line segment
features in an analogous way to point features. Towards this
end we design an architecture that computes discriminative
descriptors for a set of line segments found in an image. The
architecture is not specific to a particular line detector, as it
can adapt to peculiarities of a certain detector in the process
of learning.

At test-time, the proposed architecture takes an input image
as well as a set of detected line segments, passes the image
through a so-called fully-convolutional neural network [14]
obtaining a stack of convolutional maps at the resolution
comparable to the resolution of the input image. The descrip-
tor of each individual line segment is then obtained using
average-pooling of a fixed number of convolutional features
located along the segment (Figure 1). Importantly, the input
image is passed through a convolutional network only once,
and the bulk of the computations are thus shared between
multiple line segments, which makes our approach efficient
(as opposed to a hypothetical approach that would run a deep
network once per each line segment).

FIGURE 1. The architecture of our descriptor. The input image is passed
through a fully-convolutional neural network that computes a
high-dimensional descriptor for each pixel using multiple convolutions
interleaved with non-linearities. In parallel, a standard line segment
detector is applied. Each of the resulting line segments is then described
using average pooling of a fixed number of feature vectors corresponding
to a number of points sampled along the segment.

The training of the parameters of the convolutional net-
work is performed on an automatically-mined dataset of

matching and non-matching line segment pairs. In our
implementation, such mining is performed on two popular
datasets (KITTI [15], EuRoC MAV [16]). The mining uses
the ground truth poses of frames provided with the datasets.

Our evaluation is then performed on the hold-out parts of
these datasets (same parameters are used for both datasets,
despite the significant difference between them). We evaluate
the new descriptor, its variants, and the baselines at the task
of distinguishing matching and non-matching line segments,
as a component within a RANSAC-based motion estimation
module and within a full SLAM system [17].

To summarize, our contributions are as follows:
• We introduce a new efficient deep convolutional archi-
tecture that generates learnable deep line segment
descriptors.

• We show how to mine learning data for such a system
from the dataset with known ground truth camera poses.

• We construct a point-and-line SLAM pipeline based on
a state-of-the-art indirect stereo SLAM system using a
minimal 3D line parameterization.1

• We evaluate the learned line segment descriptor and
show its advantage over previously proposed line seg-
ment descriptors across several tasks including full
SLAM.

The remainder of the paper is organized as follows. After
the related work discussion in Section II, we cover the details
of our approach, including the architecture of the network,
the learning process, the mining process, and our variant of
point+line SLAM system in Section III. We then present
the evaluation of the learned line segment descriptor in
Section IV.We conclude with a short discussion in Section V.

II. RELATED WORK
A. LINE SEGMENT MATCHING
While line segment matching is a less studied topic than
point feature matching, one can still identify three different
classes of matching approaches. Historically the first were
the approaches which rely on geometric information for the
initial matching. They include an early method for local
tracking of straight line segments [18]. Schmid et al. [19]
assume known epipolar geometry between images and use
line segment endpoints to put segments into correspondence.
They match the lines by calculating average cross-correlation
between the image neighbourhoods. Geometric verification
of line correspondences proposed in [20] assumes known tri-
focal tensors between image triplets. In general, these meth-
ods require significant additional information about intrinsic
and extrinsic calibration of cameras, which constrains their
applicability.

The second group of approaches match line groups rather
than individual segments. Thus, Lourakis et al. [21] sug-
gests‘‘two lines + two point’’ method for line match-
ing on planar surfaces. In [22], the lines are grouped by

1https://github.com/alexander-vakhitov/ORB_
SLAM2_LLD

39924 VOLUME 7, 2019

https://github.com/alexander-vakhitov/ORB_SLAM2_LLD
https://github.com/alexander-vakhitov/ORB_SLAM2_LLD

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

spatial proximity. The signatures of groups are then computed
andmatched. Kim and Lee [23] operate on groups of coplanar
lines and their intersections, while [24] proposes an iterative
matching process using structural information collected from
different line neighbourhoods. Triplets of line matches are
used in [25] and [26] proposes a joint line-point matching
process. In [27], a shape descriptor that uses relative posi-
tion of line segments in an image is used to match satellite
images.

Finally, most related to ours are the methods that match
pairs of line segments across two views. Like in point match-
ing, such methods construct descriptors for individual line
segments and match segments based on the distance between
these descriptors. Bay et al. [28] use color histograms of
lines ignoring the surrounding image texture.Wang et al. [29]
propose a mean-standard deviation line segment descrip-
tor (MSLD), which divides segment’s neighborhood into
a grid of overlapping cells and describes individual cells
using gradient direction histograms (an approach inspired
by SIFT-like point descriptors). MSLD was evaluated in
conjunction with the Canny edges separated in high cur-
vature points ([28]) in various image modification sce-
narios (blur, JPEG, rotation or viewpoint change, additive
noise, illumination) showing its superiority to the epipolar
geometry-based Schmid’s method [19]. The multiscale ver-
sion of MSLD is described in [6]. Zhang and Koch [5] pro-
pose a line-band descriptor (LBD) that computes gradient
histograms over bands that are parallel to the considered line
segment.

B. LEARNABLE POINT-FEATURE DESCRIPTORS
While a large number of hand-crafted descriptors have been
proposed [30] since the original SIFT work [7], in the recent
years the focus has been on learnable descriptors. The
datasets for learning have been harvested using the Photo-
tourism dataset [31], using which the authors have originally
tuned the parameters of the popular hand-crafted DAISY [32]
descriptor. An alternative dataset collection involved syn-
thetic images [33].

By leveraging large automatically-generated patch pair
datasets, learning of feature point descriptors with lots of
tunable parameters becomes possible. Thus, [34] learns two
layer descriptors using convex optimization. The works that
used non-convex local optimization to tune the parameters
of deep networks include [10]–[12], [35]. In [36], a com-
pact binary patch descriptor for image matching and patch
retrieval is learned and evaluated. It is worth mentioning, that
despite overwhelming success of deep learning for high-level
computer vision [37] as well as for some dense matching
tasks such as stereo and optical flow [38], the application of
deep learning to point-feature descriptors has not improved
state-of-the-art radically (yet). Indeed, according to a recent
comparison [39], the performance of hand-engineered fea-
tures is still competitive with that of deep learning-based
descriptors in some circumstances.

C. LEARNABLE GLOBAL DESCRIPTORS
Finally, we note that our approach to line description is
closely related to methods that build global image or region
descriptors by pooling convolutional features over the entire
image [40] or bounding boxes [41].

D. POINT-AND-LINE SLAM
Zhang et al. [2] use a minimal 3D line parameterization [42]
and propose a line-only stereo SLAM pipeline. The system
however performed poorly on a publicly available dataset
due to reliance on availability of a significant number of
line features in each video frame. Recently, several stud-
ies analyzed the effect of point-line fusion in a mod-
ern optimization-based SLAM [4], [43]–[46]. In these works
non-minimal line parameterization is used as it allows for
easier integration with point-based pose graph optimization.
Non-minimal line parameterizations however pose a problem
because an infinite set of parameter values can encode the
same 3D line, while resulting in different reprojection cost
values. As a fix, [45] proposes a ’line-cutting’ algorithm
essentially restricting the set of valid line parameters and
showing improvement in accuracy. In this work, we show that
an approach of using a minimal line parameterization can be
used with success on standard SLAM benchmarks as well.

III. LEARNABLE LINE DESCRIPTOR
In this section, we provide details of our approach. We start
with describing the architecture of our descriptor, and then
describe how it can be learned from a dataset of match-
ing and non-matching pairs of line segments. Given the
learning-based nature of our work, mining matching and
non-matching line segment is an important part of the
approach. Our way to integrate the learned line segment
descriptor into a visual SLAM system is described in the end
of the section. Section IV then contains the evaluation of the
descriptor. Note: below, we denote images and stereo-images
using bold uppercase, 3D objects using uppercase and 2D
objects using lowercase, ‖ · ‖p denotes the lp norm.

A. DESCRIPTOR ARCHITECTURE
We start with the discussion of the architecture of our descrip-
tor. At test time, a (monocular) grayscale image I is passed
through a convolutional neural network fθ , where θ denotes
parameters learned on the training set. The network has the
‘‘fully-convolutional’’ architecture detailed below, and the
result of such processing F = fθ (I) has the same spatial
dimensions as the input image I and 64 channels. Effec-
tively, the mapping fθ assigns each image pixel (x, y) a
q = 64-dimensional feature vector F(x, y) ∈ R64.
Given the convolutional representation F , the descriptors

of individual line segments are then computed using sim-
ple pooling operations. In more detail, given a line seg-
ment l, we split it uniformly into T subsegments (where T
is the parameter of the algorithm). We then choose a center
of each subsegment and get a feature vector for it using

VOLUME 7, 2019 39925

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

bilinear interpolation [47]. The line segment descriptor dθ (l)
is then obtained by averaging T feature vectors (of dimen-
sionality 64) corresponding to the sampled points. As will be
seen in the experiments, T ≥ 5 provides a good choice.

TABLE 1. Learnable line segment descriptor network (LLD-Net)
composition. ‘Conv’ denotes convolution, ‘BN’ denotes batch
normalization, ’Relu’ denotes rectified linear unit. In general,
the architecture is inspired by the L2-Net [11] with few modifications.
In the third column, we show the spatial kernel size of the convolutional
operation, as well as the upsampling kernel size. The fourth column
shows the number of output maps after each block.

The architecture of the network fθ is given in Table 1.
The architecture is derived from the L2-Net proposed by
Tian and Wu [11] for computing point descriptors. The fol-
lowing modifications to their architecture have been applied.
A pair of a convolution and a strided convolution layers
have been added. We have also inserted a 8× upsampling
layer before the normalization layer, which ensures that the
representation F and the input image I have the same spa-
tial resolution. The filter size of the last convolution was
changed from 8×8 to 7×7. Similarly to L2-Net, our archi-
tecture terminates with the normalization layer, which brings
the descriptors of each pixel to unit l2-norm. We call our
architecture LLD-Net and verify some of the choices behind
it experimentally.

In general, an attractive property of our approach is that the
convolutional network fθ is applied only once to the image I
irrespective of the number of line segments detected in I.
As a result, it takes only 17 milliseconds to compute our
descriptor for an image pair on a 1080Ti GPU card. Further
significant speed-ups are possible through such techniques
as tensor factorization/separable convolutions [48], low-bit
quantization [49], group sparsification [50].

B. LEARNING THE DESCRIPTOR
Our primary goal is to learn a line segment descriptor that
works well within a SLAM or a visual odometry pipeline,
which mostly considers matching nearby frames in an input
video-sequence. We are thus interested in a descriptor that
performs best when matching is done across small temporal
spans, e.g. within five frames. We therefore form a dataset
of mini-sequences consisting of 11 subsequent stereo-images
from the training stereo-sequences, so that the temporal dis-
tance between the middle frame pair and any other frame pair
in a mini-sequence is five or less. The mini-sequence thus
contains 2× 11 = 22 monocular images.

The convolutional network fθ is then trained on mini-
batches of image pairs (I, J). Each mini-batch consists of
the left image of the middle stereopair of the mini-sequence
(denoted in a subsequent derivation as I) and a subset of the
remaining 21 images in the mini-sequence. We denote the
whole subset as J , and we denote with J individual images
from this subset. We sample b ≤ 21 images as J thus turning
amini-sequence into amini-batch of b image pairs (I, J ∈ J).

Next, we assume that a line segment detector has identified
a number of candidate line segments in each image. During
the learning process, for each 2D line segment l in a sampled
image I, we compute a descriptor dθ (l) = AvgPool(fθ (I, l))
using the current state of the network.

We now describe the process of triplet sampling for line
segment candidates, where the first two elements of the triplet
correspond to the descriptors computed for the projections of
the 3D segments of the same 3D line (see Fig. 2, bottom).
Let L be a 3D line. Let la be a 2D line segment which is a
projection of a segment of L on the image I. On some of the
images J ∈ J there can be 2D line segments l+,j that are
projections of the segments of L onto J. For each J ∈ J there
is also a set l−j = {l−,j,i}i containing the 2D line segments
that are not the projections of any segment of L.
For each L and J ∈ J we then consider the following

triplet objects. First, the ‘‘anchor’’ descriptor dθa = dθ (la),
then amatching descriptor dθ+ = dθ (l+,j), and finally we con-
sider the whole non-matching set dθ− = {d

θ (l−,j,i)}l−,j,i∈l− .
The process for finding the matching line segment and iden-
tifying the set of non-matching line segments is detailed
in Section III-C.

We then compute the hard-negative triplet loss proposed
in [51], which in our case is L(θ, {dθa , dθ+,dθ−}) =[

m+ ‖dθa − d
θ
+‖

2
− min

dθ−∈d
θ
−

‖dθa − d
θ
−‖

2

]
+

, (1)

where [x]+ = max{0, x}. The min operator ensures that
the loss focuses on the hardest negative example from the
negative set. The margin parameter m is set to 0.5 in our
experiments.

We split KITTI [15] and EuRoC [16] sequences with avail-
able ground truth into a training and validation set and a
test set as described in the experiments section. To sum up,
the training process uses batches of b image pairs, computes
the descriptors of all line segments in all chosen frames, and
then proceeds by sampling the triplets for which the loss (1)
is computed and accumulated. The cumulative loss is then
back-propagated so that the parameters θ can be updated.

C. MATCH FILTERING
The learning process described above is the main con-
tribution of this work. However to succeed it requires a
large dataset of matching and non-matching pairs. To avoid
the costly annotation process, we mine matching and
non-matching pairs in each triplet automatically from training
sequences, utilizing the ground truth camera positions (see

39926 VOLUME 7, 2019

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

FIGURE 2. Top: Mechanism of track formation during dataset generation. For each mini-sequence, we start with finding a
‘‘seed’’ consisting of geometrically consistent quadruplets of line segments. We take the views of the middle stereo pair and
the adjacent (the seventh) stereo pair and mine the segments having matches in all the four views. Next, for each track we
triangulate the 3D line and project it on the other frames of the mini-sequence and look for the matching segments close
enough to the projections (‘‘track growth’’). Bottom: Mechanism of image and line segment triplet sampling during training.
A mini-batch of b images is generated from a single randomly chosen mini-sequence. It always includes an anchor image,
which is the left image of the middle (the sixth) stereopair, and b− 1 other randomly sampled images of the mini-sequence.
At the anchor image, an anchor descriptor is formed from a line segment (red). In the mini-batch images, the matching line
segments are found (red) as well as non-matching (various colors). Among the non-matching examples, the hardest, i.e. the
closest to the positive example, is found. The triplets are formed from the anchor, matching and hardest non-matching line
segments.

Fig. 2, top). This can be regarded as training with weak
supervision.

For each image, we detect straight line segments in
the images using the EDLines line segment detection
algorithm [52] over the image pyramid of four levels with the
scale step of

√
2. We reject the 2D line segment detections

with the length less than w pixels (as measured in the original
image resolution). Note that our algorithm can work with any
line segment detector, and can adjust to its peculiarities during
the descriptor learning process.

Below we describe the mining of positive (matching) pairs
from a given mini-sequence. Such mining consists of two
stages: seed construction and track growth. Seed construction
uses the middle (the sixth) and the adjacent to it (the sev-
enth) stereo pairs. Track growth uses the remaining frames
of the mini-sequence. The result of this process is a set of
tracks T = {ti}ni=1, where each track is a set of triplets
ti = {(Ij, lj, l−j)}

ni
j=1 (to remind, the line segment lj ∈ Ij

is a positive detection and a set l−j consists of negative
matches).

For an image I, consider a 3D line L and a line segment l
connecting 2D endpoints a, b. Let the points X ,Y ∈ L
be the 3D points on line L and let x, y be their projections
onto I using the ground truth camera P. We choose X and Y

such that x and y minimize the distance to a and b in the
image coordinates. We then call a 3D segment (X ,Y) of
the line L a 3D reprojection of l onto L. We denote the
clockwise angle between l and a positive horizontal axis of
image coordinates as φ(l). We define the 2D-3D maximal
line distance as ρ(l,L) = max{‖x − a‖, ‖y − b‖} and the
l2−distance as ρ2(l,L) = (‖x − a‖2 + ‖y − b‖2)1/2. The
following conditions are checked in the different steps of the
dataset mining algorithm.

1) Cheirality holds if a 3D reprojection of l onto L is in
front of the camera that has been used to detect l by the
line detector.

2) Reprojection condition holds if ρ(l,L) < ε for a
predefined threshold ε = 3 pixels in the image pyramid
level corresponding to l.

3) Angle consistency condition holds if ‖φ(l) − φ′‖ < δ

for a predefined threshold δ = 10◦ and angle φ′.
4) 3D overlap condition holds if |(X ,Y)∪ (X ′,Y ′)|/‖X −

Y‖ > ξ for a predefined 3D segment (X ′,Y ′), X ′,Y ′ ∈
L and a threshold ξ = 0.25.

Failing at least one of the above-listed conditions (criteria)
suggests that the match between L and l is not certain and
maybe accidental, and therefore should not affect the learning
process.

VOLUME 7, 2019 39927

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

1) SEED CONSTRUCTION
We start to construct the dataset from the temporally middle
(the sixth) image pair. To check if the set of 2D lines corre-
sponds to a 3D line one needs at least three images. We there-
fore use one more adjacent stereo pair (the seventh) in this
phase. We thus take two sequential stereopairs being the sixth
and the seventh pairs within the minibatch. We denote the
corresponding left-right frames as Il, Ir and Jl, Jr . Given the
set of line segment detections in Il and Ir we consider all
possible pairwise matchings. For every possible pair (ll, lr)
we triangulate a 3D line L. We then check the Cheirality for
ll,L and lr ,L, and check Angle Consistency for lr with φ′ =
φ(ll). If a pair passes both checks, we seek corresponding line
segments from Jl and Jr . We choose l∗l ∈ Jl and l∗r ∈ Jr with
minimal ρ(l∗l ,L) (ρ(l

∗
r ,L)) satisfying the Reprojection and

3D overlap conditions.
We add a new track for each quadruplet (ll, lr , l∗l , l

∗
r).

We form the negative set as l−j = {lj ∈ Ij : ρ(lj,L) < ψ} for
ψ = 12 pixels.

The seed construction procedure takes around a second to
process a pair of stereo-pairs with few hundred line segment
detections in each frame.

2) TRACK GROWTH
In the beginning of this stage, each track has exactly
4 elements, because at the seed construction stage we created
a track only if there were projections of some 3D segments
of the same 3D line in every view of the two stereo pairs.
We process the frames of minibatch J not used in a seed
construction stage in the order of increasing absolute time dif-
ference from themiddle (the sixth) frame pair in the following
way. For each line Li we use the Reprojection condition to
find possible matching candidates. Then the segment lj with
the lowest ρ(lj,Li) among those not belonging to any other
track is picked and a triplet (J, lj, l−j) is added to the track
(l−j is formed as before). The 3D line representation Li is
refined by minimizing the sum of ρ22 (lj,L) for the whole
track.

The result of the track growth process provides us with
positive matches that can then be used to construct triplets
and to train the LLD network.

D. ORB-SLAM2 WITH LINE FEATURES
As a part of our contribution, we add line segment features
to the ORB-SLAM2 [17] pipeline making it essentially a
point+line fusion system.Wematch the line segment features
using a line descriptor. Next we describe the algorithms we
have added to the ORB-SLAM2 pipeline. Note that this part
of our work is independent of the concrete descriptor (and
we use the same procedure for the baseline system that uses
LBD descriptors). For line segments li, lj, both for our LLD
descriptors and for the real-valued LBD descriptors, we use
the standard Euclidean distance µ(dθ (li), dθ (lj)) = ‖dθ (li)−
dθ (lj)‖2 in the matching process.

1) SEGMENT DETECTION AND STEREO MATCHING
The incorporation of line features starts with line detection
in a stereo-pair containing left and right images Il and Ir .
As during learning, we filter out lines shorter than w pix-
els (in the zeroth level of an image pyramid). We form a
non-overlapping 50× 50 grid in the space of 2D lines where
each line is represented by a pair (γ, ν) where γ is the angle
between the line and the horizontal image axis, and ν is the
distance from the line to the image center. From each cell in
the grid we keep only the longest Ng lines. We iterate over the
detections from Il , and match them to the detections from Ir
in a greedy way. For each line segment ll from Il we select
the not-yet-matched line segments {lri} from Ir that fulfill the
Cheirality condition and choose among the selected segments
the one with the lowest descriptor distance µ(dθ (ll), dθ (lri)).
We do not store the detections ll having no matches in the
right frame.

2) TRACK INITIALIZATION
Next, we describe the initialization of the line segment tracks
(’addition to the map’ in the terminology of [17]). Generally,
the map contains the geometric features participating in the
bundle adjustment and thus affecting the final estimates of the
robot location.

As with the point features, we add lines to the map when
a new keyframe is created. Each matched pair (ll, lr) of line
detections from left and right frames is eligible for map addi-
tion if these detections do not belong to some other tracks.
We triangulate the line L from ll and lr . If there exists an
additional line segment from a previous frame such that the
Reprojection criterion (for ε = 6 pixels) and 3D overlap
conditions are fulfilled, we initialize the track. By checking
these conditions, we essentially use geometric validation to
discard outliers.

3) MATCHING A DETECTION TO AN EXISTING TRACK
Given a new stereo-image, and a line segment detection lli
in the left frame matched to the detection lri in the right
frame, we try to match it to the 3D lines that are already
in the map. We reproject each 3D line L corresponding to a
track in the map onto both frames and check the Reprojection
criterion for (L, lli) and for (L, lri). In the case when several
3D lines in the map are matched to the detection, we choose
the medoid of the set of descriptors for line segments forming
a track, dmed , and pick the detection with the lowest value of
µ(dmed , dθ (li)).

4) MAP LINE CULLING
The ORB-SLAM2 system maintains the set of active ele-
ments of the map that are used for local bundle adjust-
ment procedure. Each line segment element stays active after
creation, as discussed above, until removed. At each time
moment, we remove the line segment tracks from the active
map, if they have less than four matched 2D line segments in

39928 VOLUME 7, 2019

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

three recent key frames (each key frame can have upto two
matched line segments, one in each of the two frames). The
track is also removed from the active map, if the length of the
entire 3D line segment reprojected from the first detection of a
track is out of the (0.2, 50) meters range. Thus, line segments
that are too short or too long are removed from the activemap.

5) LOCAL BUNDLE ADJUSTMENT
The elements in the active map (both points and line seg-
ments) participate in the local bundle adjustment procedure.
Using line segments within the bundle adjustment requires
the choice of the line parameterization in 3D. We use the
minimal 3D line parameterization inspired by [42].

In particular, consider the parameterization, when a line is
parameterized by a 3D points X and a 3D vector Y , so that
the line contains the points {X + tY | t ∈ R}. To fix the
gauge freedom in this case, we may impose the conditions
XTY = 0, and ‖Y‖ = 1. Such conditions are however hard
to impose during bundle adjustment.

To perform the updates of the line parameters, we therefore
construct a new minimal parameterization of L by a rotation
matrix and a constant. More precisely, we form a rotation
matrix R(L) = [Y , X/‖X‖, Y × X/‖X‖] and compute a
constant α(L) = ‖X‖. The rotation matrix and the constant
uniquely define the line. We further parameterize R(L) with a
quaternion. The proposed parameterization has the same ben-
efits of being minimal as described in [42]. It does not require
additional constraints or introduce gauge freedoms. At the
same time, it leads to a nontrivial mechanism of projecting a
line onto an image described next. The new rotation+constant
line parameterization is used during optimization within bun-
dle adjustment.

To project L onto an image plane, we decode X and Y from
R and α. We then use the function πL(L, β) that computes the
projection of the 3D line L into a 2D line l defined in homo-
geneous 2D coordinates using the camera parameters β:

πL(L, β) := lh/‖l
(1:2)
h ‖, lh = π (X , β)× π (X + Y , β), (2)

where π (·, β) projects a point onto a camera parameterized
by β, l(1:2)h is a 2-length subvector of lh starting from the
1st coordinate. For the bundle adjustment we use the fol-
lowing formulas to compute the Jacobians of the parameter
updates. First of all, for the quaternions we use the Jacobians
provided by the Lie SO3 algebra. The Jacobians of X ,Y with
respect to the rotation matrix and the scalar α are directly
obtainable from the parameterization definition. If we denote
as Jπ,X (cot) the Jacobian of the perspective projection
with respect to the point parameters, then the Jacobians
of lh with respect to X and Y are given by the following
formulas:

∂lh
∂X
= [π (X , β)]×Jπ,X (X + Y)− [π (X + Y , β)]×Jπ,X (X),

(3)
∂lh
∂Y
= [π (X , β)]×Jπ,X (X + Y), (4)

The Jacobian of the projection function with respect to the lh
vector is given by:

∂π (L, β)
∂lh

=
1

‖l(1:2)h ‖

E − 2
1

‖l(1:2)h ‖3
lh[l

(1:2)
h 0]T , (5)

Finally, the Jacobian of π (L, β) with respect to the line
parameters update can be directly obtained using the chain
rule.

In order to obtain the value of our parameterization,
we compute Y and then X from a pair of the 2D line segments
detected at two different cameras. To compute Y , we note
that it is a unit norm direction vector of a 3D line, so Y =
li × lj/‖li × lj‖, where li and lj are 2D line equations in the
normalized coordinates. Then we compute X by forming a
linear system of the constraints

lTi (RiX + ti) = 0,
lTj (RjX + tj) = 0,

Y TX = 0,

(6)

where Ri,Rj are rotation matrices and ti, tj are translation
vectors for the cameras.

The proposed approach to line parameterization is simi-
lar to the one proposed in [42] but differs from it slightly.
Whereas they encode ‖X‖ as a ratio of elements of a 2D
rotation matrix, we use the parameter α to encode the length
of ‖X‖ explicitly. Likewise, we use the line direction vec-
tor Y , whereas [42] use a normal N to the plane joining O
and L. Note that while the endpoint-based parameterization
commonly used in the point-line SLAM, e.g. [4], is non-
minimal, it leads to simpler projection equations.

In our experiments, we do not modify the point feature pro-
cessing pipeline from the original point-only ORB-SLAM2.
We thus retain the point descriptor, the point triangulation
and point projection functions, and other parts of the pipeline
related to point feature processing. The bundle adjustment
objective contains the same terms as in ORB-SLAM2 and is
augmented with line feature reprojection residuals defined as
follows. Let hν(·) be a Huber cost with threshold ν, let XL
be the 3 × 2 matrix with homogeneous coordinates of the
detected line endpoints, and let6−1 be the 2×2 information
matrix. We use the following term in the local bundle adjust-
ment for line reprojection error:

ρh(L, l, β,6−1) = λhν(XTL πl(L, β)6
−1πTl (L, β)XL), (7)

where λ controls the influence of line segments reprojection
error onto the cost function. We can then refine either β
(motion-only), L (structure-only) or both β and L. We aug-
ment the objectives of the motion estimation procedure and
the local bundle adjustment procedure with the term (7) using
the information matrix 6−1 = 1

s2
I , (where I is a unit

matrix and s is the scale of the detection’s pyramid level).
Finally, the constant ν in the Huber cost is the same as
used for matching 2D points in stereo-images in the original
ORB-SLAM2 system [17].

VOLUME 7, 2019 39929

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

IV. EXPERIMENTS
A. DATASETS AND DETAILS
We evaluate the proposed descriptor on the hold-out set
of KITTI [15] and EuRoC MAV [16] datasets. The two
datasets represent two different popular usecases for SLAM
(autonomous driving and micro-aerial vehicles) that are quite
different in statistics of motion (smoother motion in the for-
mer, more jerky motion in the latter) and scene types (outdoor
for KITTI, indoor for EuRoC). We train our method on a
dataset combined from sequences 0-6 of KITTI and MH01,
MH02, MH04, V101, V103, V201, V202, V203 of EuRoC
MAV, resulting in a descriptor that is suitable for both cases.
The remaining sequences (sequences 8-10 for KITTI and
sequences MH01, MH05, V102 of EuRoC MAV) are used
for evaluation.

The detector [52] is always used over an image pyramid
of four levels with scale step 1.44. We run several epochs of
training. After each epoch we check the accuracy of motion
estimation with the matched line segments using the relative
pose algorithm [53] on the validation sequenceKITTI 07, and
stop training when the number of inliers is maximal. We learn
the networkwith theADAM [54] algorithmwith learning rate
10−4 and use the mini-batches of b = 6 images.

The architecture of our descriptor has several meta-
parameters and design choices, and we proceed by evaluating
some of these choices in the next subsection, while using the
SLAM performance as the benchmark.

After picking the variant of our descriptor, we evaluate it
on several tasks.We first compare it to the baseline on the task
of distinguishing matching and non-matching line segments.
Then, we evaluate the descriptor against the baseline for a
more practical task of intra-frame motion estimation.

Finally, we evaluate the new descriptor on the SLAM task
by embedding it into the ORB-SLAM2 pipeline. We eval-
uate the learned descriptor (ORB-SLAM2+LLD) against
the same pipeline using the handcrafted LBD descriptor [5]
(ORB-SLAM2+LBD) and the original ORB-SLAM2
pipeline that does not use any line features. For all exper-
iments we report a median error over 5 runs. We use a
computer with i7-4960X 3.6 GHz CPU and a GT1080 TI
GPU. For the new point-and-line SLAM pipeline we use
w = 25 pixels, Ng = 5 for KITTI and w = 75 pixels,
Ng = 2 for EuRoCMAV, and we set λ = 0.5 for both datasets
irrespective of the descriptor used.

B. ARCHITECTURE SEARCH
In this section, we compare several variants of the architec-
ture to justify the proposed variant. As a comparison mea-
sure we use an average root mean squared error (RMSE)
of SLAM trajectories for the KITTI sequences 08-10 and
EuRoC sequences that were not seen during training.

1) DOWNSAMPLING LEVEL
We compare the proposed network that uses the ×8 down-
sampling network with the ×4 downsampling network

TABLE 2. Learnable line segment descriptor network (LLD-Net) with
4× downsampling, same notation as in Table 1.

TABLE 3. Evaluation of the time needed for inference for a stereo pair,
in milliseconds, for different levels of downsampling in the deep network.
The 8×-downsampling network is faster than 4×-downsampling network
by 30 %.

TABLE 4. Architecture search results. We use different modifications of
the basic LLD-Net to compute line segment descriptors and use them
inside the SLAM pipeline. We use the KITTI Odometry sequences
08-10 and EuRoC MAV sequences MH03, MH05 and V102 which were held
out during training. We report root mean square (RMS) errors in meters.
The chosen (default) architecture performs better than other variants that
we have tried. See text for the explanation of other tested variants.

(see Table 2 for the description of the network architec-
tures). The trajectory reconstruction errors obtained with
descriptors generated by these networks are given in Table 4,
column ’×4’. The inference time for the stereo pair of a
KITTI sequence (approximately 1MPix images) is given in
Table 3. We see that the chosen network with 8× down-
sampling of an input image is better in terms of trajectory
accuracy and faster by 30 %. The advantage in terms of
accuracy can be interpreted as the benefit of having larger
receptive field when computing the descriptors (in the case
of the default architecture).

2) LEARNABLE SKIP CONNECTIONS
Our default architecture has a 8 × 8 upsampling layer in the
end. One may wonder whether more conventional gradual
upsampling via several layers would result in better matching
accuracy. Towards this end, we have replaced the 8 × 8
upsampling layer with a sequence of 2×2 upsampling layers
and 3× 3 conv + BatchNormalization + ReLu blocks. This
sequence of layers is repeated three times resulting in the
same output size as in the default LLD-Net architecture.

39930 VOLUME 7, 2019

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

FIGURE 3. Number of inliers in line-based pose estimation inside a
RANSAC loop for the test sequences from KITTI and EuRoC datasets
between a left and a right frame number n and a left frame number l + s
for s = 1,3,5 and all possible n. LLD-based motion estimation
consistently produces two times more inliers than LBD-based one.

We also add so-called skip-connections to the downsampling
layers of the same resolution, as has been popularized by
the U-Net architecture [55]. The results (’skip’ column in the
table 4) show degradation in accuracy. The new variant with
skip connections also has markedly increased running time.

3) LOSS FUNCTION
We compare the proposed training approach with the one
using a recently proposed local descriptor learning loss [12]
with m = 0.5. Their loss penalizes the small negative dis-
tances in absolute scale rather than the closeness of positive
and negative distances. The result (column ’loss_ldl’) sug-
gests that the variant of the triplet loss used to train the default
system works better for our task.

4) SAMPLING DENSITY
To highlight the role of pooling within the descriptor com-
putation, we compare the proposed network which samples
T = 5 points on a line with a baseline that uses just a single
middle point of a segment. As expected, the result (T = 1
column in table 4) shows the degradation in accuracy, proving
importance of line-based pooling of the feature descriptors.
Note that the computational cost of the pooling is negligible
compared to the cost of computing the descriptors.

C. RETRIEVAL OF LINE SEGMENTS
Having validated the default LLD-Net architecture against
several variants, we now compare it against the baseline.
We first evaluate the learnable descriptor against the hand-
crafted LBD (line band descriptor) baseline on the task of
distinguishing the matching and non-matching descriptors.
We use a dataset of matching and non-matching line seg-
ments for the KITTI test sequences 08-10. The dataset is
obtained as described in Section III. For all the line segments
we compute the 72-dimensional LBD descriptor using the
OpenCV implementation and the proposed 64-dimensional

FIGURE 5. Precision-recall curves for the learnable (LLD) and
hand-crafted (LBD) descriptors computed on the test sequences of the
KITTI dataset (08-10). Solid lines: descriptors computed on the
unmodified images. Dashed lines: descriptors computed (and trained,
in case of LLD) on the images with additional Gaussian noise with σ = 30.
The learnable descriptor outperforms the handcrafted one in terms of
precision and is more robust to additive noise.

LLD descriptor. Once the matching and non-matching pairs
are identified, we test the ability of descriptors to distinguish
such pairs by comparing the distances between descriptors to
a certain threshold τ (we expect that for an appropriate τ the
distances between matching line segment descriptors should
be less than τ , while the distances between non-matching line
segment descriptors should be above τ).

We compare the descriptors both for the original
sequences, and in the case when strong artificial noise
(Gaussian, σ = 30) is added to the images during training and
when computing descriptors on the test data. The latter exper-
iment tests the ability of our learnable descriptor to adapt to
certain sensor characteristics. We show the recall-precision
curves obtained for varying matching threshold τ in Figure 5.
We observe that our descriptor outperforms the baseline by a
considerable margin, and that it shows graceful degradation
when noise is added (in fact, in the high-recall area the
performance of our learnable descriptor does not degrade at
all when noise is added).

D. DESCRIPTOR INVARIANCE TO CAMERA MOTION
We now move from a more artificial task (retrieval of line
segments) to a more practical task of inter-frame motion esti-
mation. We therefore compare the invariance of the descrip-
tors to camera motions. More specifically, we do line-based
relative camera pose estimation. We match the line segments
from left and right frames number n and left frame number
n + s for s = 1, 3, 5 and all possible n. Once again, we use
hold-out KITTI and EuRoC sequences, and we compare LLD
and LBD descriptors. For relative pose estimation we use an
algorithm [53] inside a RANSAC loop with a threshold of ten
pixels. The average numbers of inliers for different s shown
at the Figure 3 indicate that LLD has greater invariance for
smaller as well as bigger camera motions, so that LLD-based
motion estimation consistently produces more inliers than
LBD-based one.

VOLUME 7, 2019 39931

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

FIGURE 4. Top: EuRoC Track MH05, the trajectory ground truth projected on XZ plane, and the reconstructed trajectories by different methods
(each trajectory is rigidly aligned with the ground truth). The trajectory reconstructed by the ORB-SLAM2+LLD (red) is closer to the ground
truth trajectory (dashed black) demonstrating the advantage of the proposed descriptor. Bottom-left: feature tracking visualization in the
ORB-SLAM2+LLD system for a single frame of the sequence. Bottom-right: the map constructed by ORB-SLAM2+LLD system. The green
frustum corresponds to the frame shown in the bottom-left; the blue frustums represent other frames of the reconstructed trajectory. Black
lines show segments of 3D lines inserted into the map. Red (black) points correspond to the map points used (not used) in the local bundle
adjustment.

TABLE 5. Trajectory errors on the KITTI Odometry sequences 08-10 for the ORB-SLAM2 system, and its modifications using our LLD and SIFT-inspired LBD
for line segment matching. trmse is a RMS error (m.), trel and rrel are relative translation (cm.) and rotation errors (deg. ×10−3) measured over parts of the
trajectory using the code provided with KITTI. According to the mean errors over the three sequences, the system based on handcrafted line descriptors
ORB-SLAM2+LBD outperforms ORB-SLAM2, and the system based on the learnable descriptors ORB-SLAM2+LLD outperforms both baselines.

E. EVALUATION INSIDE A SLAM PIPELINE
Finally, we evaluate how the new descriptors affect the per-
formance of a SLAM system. We thus compare the original
ORB-SLAM2 pipeline, the modified ORB-SLAM2 pipeline
with the non-learned LBD line segment descriptor
(ORB-SLAM2+LBD), and finally the proposed system
(ORB-SLAM2+LLD). The results of the comparison for
KITTI sequences are shown in Table 5. The proposed
ORB-SLAM2+LLD system outperforms the point-only sys-
tem ORB-SLAM2 in all metrics except relative translation
in one sequence out of three. The ORB-SLAM2+LBD

outperforms the point-only baseline in term of all metrics
on two out of three sequences. According to the mean errors
over the three sequences, the system based on handcrafted
line descriptors ORB-SLAM2+LBD outperforms ORB-
SLAM2, and the system based on the learnable descriptors
ORB-SLAM2+LLD outperforms both baselines. While the
relative translation error is almost unchanged, the RMSE
and the relative rotation errors of the ORB-SLAM2+LLD
decrease by 10-20% compared to the point-only system.
Due to improvement of rotation estimation accuracy in the
line-based systems, the turning pieces of the trajectory are

39932 VOLUME 7, 2019

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

estimated more accurately which leads to the improvement
in the alignment of the predicted trajectory with the ground
truth one.

TABLE 6. Root mean square (RMS) trajectory errors (meters) on the
EuRoc-MAV dataset for the ORB-SLAM2 system and its modifications
using our LLD and SIFT-inspired LBD descriptors for line segment
matching. In terms of the mean RMSE over three sequences,
the point+line systems outperform the point-only baseline and the
system using learnable line descriptor has higher accuracy than the
system using the handcrafted one.

Naturally, the advantage is bigger on EuRoC sequences,
which are more challenging, and where the performance of
ORB-SLAM is less close to perfect. The results on EuRoC
MAV are shown in Table 6, where we report RMSE on
three test sequences of the dataset. The mean errors are
reduced by more than by 40% when using the learnable line
descriptor-based system compared to the point-only system,
and by more than 20% when using the handcrafted line
descriptor-based system. The system based on the hand-
crafted LBD descriptors outperforms the point-only system
ORB-SLAM2 on two out of three sequences, while the sys-
tem based on the proposed LLD descriptor outperforms the
point only baseline on all sequences, and the LBD-based
baseline on two out of three sequences. We show the differ-
ence in obtained trajectories on one of the EuRoC sequences
in Figure 4.

V. CONCLUSION
We have investigated the use of deep learning for the training
of line segment descriptors. Along the way, we have shown
that adding lines into the popular ORB-SLAM2 system
improves its accuracy. Once integrated into ORB-SLAM2,
line segment descriptors obtained with our deep learning
approach outperform the hand-crafted descriptors.

The advantage of the learned descriptor over the
hand-crafted one comes at a computational price, which
is currently around 17 milliseconds on a 1080Ti GPU per
frame pair. In our system, this computational cost is largely
independent on the number of line segments detected in the
frame.

Our current system uses an external line segment detector.
It can thus be regarded as a first step towards a completely
learnable feature pipeline for visual line-based SLAM. The
end-to-end learning of a descriptor and a detector could
increase the resulting accuracy by co-adaptation of the mod-
ules, which are trained separately in the current system.
Another prospective direction is to investigate how same
convolutional architecture can be shared between the point
and line descriptors thus increasing the efficiency. Another
possibility that has been left for future work is investigating
various ways of speeding up the computation further using
low-bit quantization of weights and quantizations, depthwise

separable and spatially separable convolutions, which can
lead to reducing the number of layers (with potential use of
dilated convolution to keep the receptive field large).

REFERENCES
[1] J. Sola, T. Vidal-Calleja, J. Civera, and J. M. M. Montiel, ‘‘Impact of land-

mark parametrization on monocular EKF-SLAM with points and lines,’’
Int. J. Comput. Vis., vol. 97, no. 3, pp. 339–368, 2012.

[2] G. Zhang, J. H. Lee, J. Lim, and I. H. Suh, ‘‘Building a 3-D line-based map
using stereo SLAM,’’ IEEE Trans. Robot., vol. 31, no. 6, pp. 1364–1377,
Dec. 2015.

[3] T. Holzmann, F. Fraundorfer, and H. Bischof, ‘‘Direct stereo visual odom-
etry based on lines,’’ in Proc. 11th Int. Joint Conf. Comput. Vis., Imag.
Comput. Graph. Theory Appl., 2016, pp. 1–11.

[4] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-
Noguer, ‘‘PL-SLAM: Real-time monocular visual SLAM with points and
lines,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May/Jun. 2017,
pp. 4503–4508.

[5] L. Zhang and R. Koch, ‘‘An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric consistency,’’
J. Vis. Commun. Image Represent., vol. 24, no. 7, pp. 794–805, 2013.

[6] B. Verhagen, R. Timofte, and L. Van Gool, ‘‘Scale-invariant line descrip-
tors for wide baseline matching,’’ in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Mar. 2014, pp. 493–500.

[7] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[8] S. Winder, G. Hua, and M. Brown, ‘‘Picking the best DAISY,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2009, pp. 178–185.

[9] K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Descriptor learning using
convex optimisation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2012,
pp. 243–256.

[10] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and
F. Moreno-Noguer, ‘‘Discriminative learning of deep convolutional
feature point descriptors,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 118–126.

[11] B. Fan, Y. Tian and F. Wu, ‘‘L2-Net: Deep learning of discriminative
patch descriptor in Euclidean space,’’ in Proc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 2, 2017, pp. 661–669.

[12] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, ‘‘Working hard to
know your neighbor’s margins: Local descriptor learning loss,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 4829–4840.

[13] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric
discriminatively, with application to face verification,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005,
pp. 539–546.

[14] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[15] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2012, pp. 3354–3361.

[16] M. Burri et al., ‘‘The EuRoC micro aerial vehicle datasets,’’ Int.
J. Robot. Res., vol. 35, no. 10, pp. 1157–1163, 2016. [Online].
Available: http://ijr.sagepub.com/content/early/2016/01/21/02783649156
20033. abstract

[17] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[18] R. Deriche and O. Faugeras, ‘‘Tracking line segments,’’ Image Vis.
Comput., vol. 8, no. 4, pp. 261–270, 1990.

[19] C. Schmid and A. Zisserman, ‘‘The geometry and matching of lines
and curves over multiple views,’’ Int. J. Comput. Vis., vol. 40, no. 3,
pp. 199–233, 2000.

[20] R. I. Hartley, ‘‘A linear method for reconstruction from lines and points,’’
in Proc. IEEE 5th Int. Conf. Comput. Vis., Jun. 1995, pp. 882–887.

[21] M. I. A. Lourakis, S. T. Halkidis, and S. C. Orphanoudakis, ‘‘Matching
disparate views of planar surfaces using projective invariants,’’ Image Vis.
Comput., vol. 18, no. 9, pp. 673–683, 2000.

[22] L. Wang, U. Neumann, and S. You, ‘‘Wide-baseline image matching
using line signatures,’’ in Proc. IEEE 12th Int. Conf. Comput. Vis.,
Sep./Oct. 2009, pp. 1311–1318.

VOLUME 7, 2019 39933

A. Vakhitov, V. Lempitsky: Learnable Line Segment Descriptor for Visual SLAM

[23] H. Kim and S. Lee, ‘‘Simultaneous line matching and epipolar geometry
estimation based on the intersection context of coplanar line pairs,’’Pattern
Recognit. Lett., vol. 33, no. 10, pp. 1349–1363, 2012.

[24] J. López, R. Santos, X. R. Fdez-Vidal, and X. M. Pardo, ‘‘Two-view
line matching algorithm based on context and appearance in low-textured
images,’’ Pattern Recognit., vol. 48, no. 7, pp. 2164–2184, 2015.

[25] Y. Li and R. L. Stevenson, ‘‘Multimodal image registration with line
segments by selective search,’’ IEEE Trans. Cybern., vol. 47, no. 5,
pp. 1285–1298, May 2017.

[26] Q. Jia, X. Gao, X. Fan, Z. Luo, H. Li, and Z. Chen, ‘‘Novel coplanar
line-points invariants for robust line matching across views,’’ in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 599–611.

[27] X. Shi and J. Jiang, ‘‘Automatic registration method for optical remote
sensing images with large background variations using line segments,’’
Remote Sens., vol. 8, no. 5, p. 426, 2016.

[28] H. Bay, V. Ferraris, and L. Van Gool, ‘‘Wide-baseline stereo matching with
line segments,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1, Jun. 2005, pp. 329–336.

[29] Z. Wang, F. Wu, and Z. Hu, ‘‘MSLD: A robust descriptor for line match-
ing,’’ Pattern Recognit., vol. 42, no. 5, pp. 941–953, 2009.

[30] K. Mikolajczyk and C. Schmid, ‘‘A performance evaluation of local
descriptors,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[31] M. Brown, G. Hua, and S. Winder, ‘‘Discriminative learning of local
image descriptors,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 43–57, Jan. 2011.

[32] E. Tola, V. Lepetit, and P. Fua, ‘‘DAISY: An efficient dense descriptor
applied to wide-baseline stereo,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 5, pp. 815–830, May 2010.

[33] B. Kaneva, A. Torralba, andW. T. Freeman, ‘‘Evaluation of image features
using a photorealistic virtual world,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Nov. 2011, pp. 2282–2289.

[34] K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Learning local feature
descriptors using convex optimisation,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 8, pp. 1573–1585, Aug. 2014.

[35] K.M. Yi, E. Trulls, V. Lepetit, and P. Fua, ‘‘LIFT: Learned invariant feature
transform,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2016, pp. 467–483.

[36] M. Zieba, P. Semberecki, T. El-Gaaly, and T. Trzcinski, ‘‘BinGAN: Learn-
ing compact binary descriptors with a regularized GAN,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 3612–3622.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[38] A. Dosovitskiy et al., ‘‘FlowNet: Learning optical flow with convolu-
tional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 2758–2766.

[39] V. Balntas, K. Lenc, A. Vedaldi, and K.Mikolajczyk, ‘‘HPatches: A bench-
mark and evaluation of handcrafted and learned local descriptors,’’ in
Proc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, vol. 4, no. 5,
pp. 5173–5182.

[40] A. Babenko and V. S. Lempitsky, ‘‘Aggregating local deep features for
image retrieval,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago,
Chile, Dec. 2015, pp. 1269–1277.

[41] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, ‘‘Deep image retrieval:
Learning global representations for image search,’’ in Proc. 14th Eur.
Conf. Comput. Vis. (ECCV), Amsterdam, The Netherlands, Oct. 2016,
pp. 241–257.

[42] A. Bartoli and P. Sturm, ‘‘Structure-from-motion using lines: Representa-
tion, triangulation, and bundle adjustment,’’ Comput. Vis. Image Under-
stand., vol. 100, no. 3, pp. 416–441, 2005.

[43] R. Gomez-Ojeda, D. Zuñiga-Noël, F.-A. Moreno, D. Scaramuzza, and
J. Gonzalez-Jimenez. (2017). ‘‘PL-SLAM:A stereo SLAMsystem through
the combination of points and line segments.’’ [Online]. Available:
https://arxiv.org/abs/1705.09479

[44] H. Li, J. Yao, J.-C. Bazin, X. Lu, Y. Xing, andK. Liu, ‘‘Amonocular SLAM
system leveraging structural regularity in manhattan world,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 2518–2525.

[45] Y. Zhao and P. A. Vela, ‘‘Good line cutting: Towards accurate pose tracking
of line-assisted VO/VSLAM,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 516–531.

[46] J. Zhang, G. Zeng, and H. Zha, ‘‘Structure-aware SLAM with planes and
lines in man-made environment,’’ Pattern Recognit. Lett., to be published.

[47] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, ‘‘Spatial
transformer networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2017–2025.

[48] F. Chollet. (2016). ‘‘Xception: Deep learning with depthwise separable
convolutions.’’ [Online]. Available: https://arxiv.org/abs/1610.02357

[49] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 525–542.

[50] V. Lebedev and V. Lempitsky, ‘‘Fast ConvNets using group-wise brain
damage,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2554–2564.

[51] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 815–823.

[52] C. Akinlar and C. Topal, ‘‘EDLines: A real-time line segment detector
with a false detection control,’’ Pattern Recognit. Lett., vol. 32, no. 13,
pp. 1633–1642, Oct. 2011.

[53] A. Vakhitov, V. Lempitsky, and Y. Zheng, ‘‘Stereo relative pose from line
and point feature triplets,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 648–663.

[54] D. P. Kingma and J. Ba. (2014). ‘‘Adam: Amethod for stochastic optimiza-
tion.’’ [Online]. Available: https://arxiv.org/abs/1412.6980

[55] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional net-
works for biomedical image segmentation,’’ in Proc. 18th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. (MICCAI), Munich, Germany,
Oct. 2015, pp. 234–241.

Authors’ photographs and biographies not available at the time of
publication.

39934 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	LINE SEGMENT MATCHING
	LEARNABLE POINT-FEATURE DESCRIPTORS
	LEARNABLE GLOBAL DESCRIPTORS
	POINT-AND-LINE SLAM

	LEARNABLE LINE DESCRIPTOR
	DESCRIPTOR ARCHITECTURE
	LEARNING THE DESCRIPTOR
	MATCH FILTERING
	SEED CONSTRUCTION
	TRACK GROWTH

	ORB-SLAM2 WITH LINE FEATURES
	SEGMENT DETECTION AND STEREO MATCHING
	TRACK INITIALIZATION
	MATCHING A DETECTION TO AN EXISTING TRACK
	MAP LINE CULLING
	LOCAL BUNDLE ADJUSTMENT

	EXPERIMENTS
	DATASETS AND DETAILS
	ARCHITECTURE SEARCH
	DOWNSAMPLING LEVEL
	LEARNABLE SKIP CONNECTIONS
	LOSS FUNCTION
	SAMPLING DENSITY

	RETRIEVAL OF LINE SEGMENTS
	DESCRIPTOR INVARIANCE TO CAMERA MOTION
	EVALUATION INSIDE A SLAM PIPELINE

	CONCLUSION
	REFERENCES
	Biographies
	Authors'

