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1. INTRODUCTION

The problem of search for the minimum (maximum) of a function (functional) f(x) → minx

is known since long. A large number of problems is reduced to this problem. Often the order
of equations thus obtained and the number of unknowns are such that the solution cannot be
determined analytically. In reality, analytical solution is not of great significance since it is distorted
in application (for example, due to the limited digital capacity of the computer or inaccuracy of
measuring devices).

For a continuously differentiable function, the problem is reduced to the determination of the
roots of its derivative (or points at which the gradient vanishes). But if the function is not dif-
ferentiable or the general form of the function is not known, the problem takes qualitatively a
different nature. Nevertheless, there are algorithms capable of solving a wide range of problems
with any given degree of accuracy. Such algorithms need no special application techniques and
do not strongly depend on the type of the functional (if it belongs to a special class of applica-
tions). Such a kind of universality obviously results in the simplicity of their computer realization
and iterative nature aids in refining the estimate at every new iteration. Here we mean recurrent
stochastic optimization algorithms.

Most of pseudo-gradient optimization methods like the Kiefer–Wolfowitz procedure [1] require
several measurements of the loss function at every iteration. As a result, the minimized function
must be measured at several points in every iteration. But if the function changes with time or
its measurement depends on the realization of some random variable and the function is to be
minimized on the mean

Ew{F (x,w)} → min
x
,

then multiple measurement of the function at a point is not possible. Such a situation arises, for
instance, in optimization of systems in real time.

Algorithms satisfying such constraints were designed at the end of eighties and beginning of
nineties [2–12]. They are called the randomized stochastic optimization algorithms since their
input data are artificially randomized at every step. Their main advantages are the convergence
under “almost arbitrary” perturbations [9–15] and a small number (one or two) of measurements
of the loss function in iterations.
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590 VAKHITOV et al.

This paper is the continuation of [9–11]. Here we study new, but weaker, conditions for the
convergence of the randomized stochastic optimization algorithm with one measurement of the loss
function, estimate the result for a finite number of iterations, and design a scheme for realization of
the main part of this algorithm on a quantum computer. Weaker convergence conditions widen the
range of application of the algorithm and, consequently, the algorithm can be confidently applied
even if the properties of the loss functions are known only in part.

2. FORMULATION OF THE PROBLEM AND MAIN ASSUMPTIONS

Let F (x,w) : R
q × R

p → R
1 be a differentiable function with respect to x and let x1,x2, . . . be

an experimentally chosen sequence of measurement points (observation plan) at which the value

yn = F (xn,wn) + vn,

of the function F (·,wn) is observed with additive noises vn at instants n = 1, 2, . . . , where {wn} is
an uncontrollable sequence of random variables belonging to R

p and having, in general, an unknown
distribution Pw(·) with a finite carrier.

Formulation of the problem. Using observations y1, y2, . . . , we must construct a sequence of es-
timates {̂θn} for the unknown vector θ∗ minimizing the function

f(x) = Ew{F (x,w)} =
∫

Rp

F (x,w)Pw(dw)

of the type of a mean-risk functional.
Usually, minimization of the function f(·) is studied with a simpler observation model

yn = f(xn) + vn

that fits within the general scheme. The generalization stipulated in the formulation of the problem
is required to include the case of multiplicative noises in observations

yn = wnf(xn) + vn,

and this case is contained in the general scheme with the function F (x,w) = wf(x).
Let ρ ∈ (1, 2]. In what follows, we denote expectation by E{·}, lρ-norm by ‖ · ‖ρ and scalar

product in R
q by 〈·, ·〉. Let us introduce a function

V (x) = ‖x− θ∗‖ρ
ρ =

q
∑

i=1

|x(i) − θ
(i)
∗ |ρ,

where θ∗ is an unknown vector.
Let us formulate the main assumptions.
(A.1) The function f(x) has a unique minimum and

(∇V (x),∇f(x)) ≥ μV (x) ∀x ∈ R
q

with some constant μ > 0.
(A.2) For any w, gradients of the functions F (·,w) satisfy the condition

‖∇xF (x,w) −∇xF (y,w)‖ ρ
ρ−1

≤M‖x − y‖ ρ
ρ−1

∀x,y ∈ R
q

with some constant M > 0.

3. TEST PERTURBATION AND THE MAIN ALGORITHM

Let Δn, n = 1, 2, . . . , be an observed sequence of independent random vectors in R
q, called

the simultaneous test perturbation. Vector components are also mutually independent and take
values ±1 with identical probability 1

2 .
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Taking an initial vector ̂θ0 ∈ R
q, let us choose two sequences {αn} and {βn} of positive numbers.

In [10–12], the sequence of measurement points {xn} and estimate sequence {̂θn} are constructed
with the following algorithm based on the use of one observation at every step (iteration):

⎧

⎪

⎨

⎪

⎩

xn = ̂θn−1 + βnΔn, yn = F (xn,wn) + vn

̂θn = PΘn

(

̂θn−1 − αn

βn
Δnyn

)

,
(1)

where PΘn(·), n = 1, 2, . . . , are projections on certain convex closed bounded subsets Θn ⊂ R
q

containing, beginning from some n ≥ 0, the point θ∗. For a known convex closed bounded set Θ
containing the point θ∗, we can take Θn = Θ. Otherwise, the sets {Θn} may be infinite.

4. CONVERGENCE

Let W = supp(Pw(·)) ⊂ R
p be a finite carrier of the distribution Pw(·), let Fn be a σ-algebra of

probability events generated by the random variables ̂θ0, ̂θ1, . . . , ̂θn, formed by algorithm (1), let
dn = diam(Θn) be the diameter of the set Θn in the metric l ρ

ρ−1
, and let

γn = αnρμ− αnβn(ρ− 1)q
ρ+1

ρ M − 22ρ−1qcnψn,

φn = αnβnq
ρ+1

ρ M + 2ρqcn max
w∈W

|F (θ∗,w)|ρ + 23ρ−2q2βρ
nψn,

cn = αρ
nβ

−ρ
n ρ, ψn = Mρdρ

n + max
w∈W

‖∇xF (θ∗,w)‖ρ
ρ

ρ−1
.

Theorem 1. Let ρ ∈ (1, 2] and let the following conditions hold:
the function f(x) = E{F (x,w)} satisfies (A.1),
the function F (·,w) ∀w ∈ W satisfies (A.2),
the functions F (x,w) and ∇xF (x,w) are uniformly bounded on W,
∀n ≥ 1, the random variables v1, . . . , vn and vectors w1, . . . ,wn−1 do not depend on wn and

Δn, and the random vector wn does not depend on Δn,

E{|vn|ρ} ≤ σρ
n, n = 1, 2, . . . ,

∀n, 0 ≤ γn ≤ 1,
∑

n
γn = ∞, μn → 0 as n→ ∞, where

μn =
φn + 2qcnσρ

n

γn
, zn =

(

1 − μn+1

μn

)

1
γn+1

.

Then
(1) the estimate sequence {̂θn} generated by algorithm (1) tends to the point θ∗ in the sense

E{V (̂θn)} → 0 as n→ ∞,

(2) if lim
n→∞ zn ≥ z > 1, then E{V (̂θn)} = O

(

n−1
∏

i=0
(1 − γi)

)

,

(3) if zn ≥ z > 1 ∀n, then E{V (̂θn)} ≤
(

E{V (̂θ0)} +
μ0

z − 1

)

n−1
∏

i=0
(1 − γi),

(4) if, additionally,
∑

n

φn + 2qcnE{σρ
n

∣

∣Fn−1} <∞,
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then ̂θn → θ∗ as n→ ∞ with probability 1, and

P{V (̂θn) ≤ ε ∀n ≥ n0} ≥ 1 −
E{V (̂θn0)} +

∞
∑

n=n0

φn + 2qcnσρ
n

ε
.

The proof of Theorem 1 is given in the Appendix.
Remark (1) Conditions of Theorem 1 hold for the function F (x,w) = wf(x) if the function

f(x) satisfies assumptions (A.1) and (A.2).
(2) In Theorem 1, observation noises vn can be said to be “almost arbitrary” since they may

not be random, but unknown and bounded or realization of some stochastic process of arbitrary
structure. Moreover, there is no need to assume that vn and Fn−1 are related to prove the assertions
of Theorem 1.

(3) For Theorem 1 to hold, the components of the test perturbation Δn need not necessarily
take only the values ±1. It suffices to assume that their distribution carrier is symmetric and finite.

5. AN EXAMPLE

Let us demonstrate the performance of algorithm (1) with an example on its application to a
two-dimensional optimization problem. Let us assume that a point θ∗ (target) lies on a plane and
its location is not known. Let us assume that for any point x, we can measure |x(1) − θ

(1)
∗ |1.2 +

|x(2) − θ
(2)
∗ |1.2 only with multiplicative and additive noises, i.e.,

yn = wn

(

|x(1) − θ
(1)
∗ |1,2 + |x(2) − θ

(2)
∗ |1.2

)

+ vn

are observable. The problem now is to find the location of the target.
In this case, F (x,w) = w‖x − θ∗‖1.2

1.2. In the modeling experiment, noises were taken to be
random independent sequences with a normal distribution N (1; 1) for multiplicative and bounded

random variables, and deterministic sequences for additive variables |vn| ≤ 1
2
. Number sequences

{αn} and {βn} were chosen such that αn =
0.15√
n

, βn = 1. Projection was not used. The figure

shows a typical result generated by the algorithm in one thousand iterations (vertices of the broken
line are estimates). Coordinates of the target are θ∗ =(−6.58, 8.87)T . Coordinates of the estimate
are ̂θ1000 = (−6.76, 8.78)T .

 

5

–5 0

An estimate sequence.

AUTOMATION AND REMOTE CONTROL Vol. 67 No. 4 2006



A RANDOMIZED STOCHASTIC OPTIMIZATION ALGORITHM 593

Theorem 1 states only sufficient conditions. The main constraints on the minimized function
are satisfied in our example. Though not all conditions are satisfied for the number sequences {αn}
and {βn} and the carrier W is not finite, the algorithm generated satisfactory estimate sequences.

6. QUANTUM COMPUTER AND ESTIMATION
OF THE GRADIENT VECTOR OF A FUNCTION

Let us examine the choice of a best computer for implementing the randomized stochastic
optimization algorithm with one measurement of the penalty function in iterations. Realization of
algorithm (1) on a quantum computer is described in [10]. Recently, terminology and axiomatics of
quantum computation models have been greatly refined. The realization method of [10] does not
resemble a typical “quantum” algorithm and the earlier representation is not satisfactory. Below we
describe a new method of representation of algorithms for implementation on a quantum computer,
i.e., a method that is consistent with the general logic of quantum computation algorithms.

Till recently, quantum computer was regarded exclusively as a speculative mathematical model.
It is no longer speculative owing to the NMR-based quantum computers developed by the IBM
Corporation [16]. Of course, serious difficulties are still encountered in designing a quantum com-
puter for everyday use. Nonetheless, intensive research and development projects are under way to
surmount this problem.

We now briefly outline the mathematic model of a quantum computer and show how algo-
rithm (1) is represented in this model. States in quantum mechanics are often denoted by vectors
of unit length in a vector space over the field of complex numbers. Observed quantities are repre-
sented by self-conjugate operators in this complex space [17]. An observed quantity is a method of
obtaining information on the state. Measurement of the quantum system changes this information.
By measurement, we obtain one of the eigenvalues of the observed quantity and the system itself
passes to the eigenvector corresponding to this eigenvalue. In measurement, an eigenvalue is chosen
at random with a probability, equal to the square of the projection of the state on the corresponding
eigenvector. Clearly, measurement of the quantum system yields complete information only if the
state of the system coincides with one of the eigenvectors of the chosen observed quantity.

A quantum computer processes “qbits” (“quantum bits”), which form a quantum system of
two states (a microscopic system corresponding to the description of an excited ion or a polarized
photon, or spin of the atomic nucleus). The base of the qbit state space is usually denoted by |0〉 and
|1〉 in analogy with the notation {0, 1} used in the classical information theory. Such a system can
exist not only in base states, but is also capable of storing more information than the corresponding
classical system. Nevertheless, it passes to one of the base states during measurements (if the
observed system is properly chosen) and the information it contains corresponds to some classical
information. A quantum system of r qbits is represented as a tensor product. A set of base vectors
of this state space can be parametrized by bit rows of length r. For example, for r = 3, the base
vector |0〉⊗|0〉⊗|0〉 can be denoted by |000〉. Sometimes it is more convenient to use another form of
expression |0〉|0〉|0〉 or |00〉|0〉. Therefore, the dimension of the space that a quantum computer uses
grows exponentially with the number of qbits. This property underlies the “quantum parallelism.”
A rigorous quantum computation model is described in [18, 19].

Another important property of quantum states is their unique evolution. In other words, every
transformation of qbits in a quantum computer is a unitary operator in the corresponding complex
space. Hence every transformation of information (except for measurements) in a quantum com-
puter must be invertible. Let f : R

q → R be a function satisfying the conditions of Theorem 1. Let
us assume that the quantum computer is an r-bit machine. The unitary operation realizing the
function f(x) on a quantum computer can be defined on all classical binary chains x of length qr,
defining the argument of the function Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, where y is an arbitrary binary
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chain of length r and ⊕ is a bit-by-bit operation of logical AND. This is a method of defining an
operator on base vectors. On all other vectors, the operator is continued linearly. Clearly, the
operator thus constructed is invertible and acts in a complex space of dimension 2qr+r.

We estimate the minimum of a function, using algorithm (1). To feed the computer input, let
us prepare a superposition of 2q perturbed values of the current estimate vector

xn =
1

2
q
2

∑

Δi∈{−1,+1}q

|̂θn−1 + βnΔi〉,

where ±1 are regarded as r-digit numbers. Applying the unitary operator Uf to |xn〉|0〉, we obtain

Uf |xn〉|0〉 =
1
2q

∑

Δi∈{−1,+1}q

|̂θn−1 + βnΔi〉|f(̂θn−1 + βnΔi)〉.

By the general properties of the quantum computation model, after a state measurement, we obtain

with probability
1
2q

a vector

|̂θn−1 + βnΔi〉|f(̂θn−1 + βnΔi)〉, Δi ∈ {−1,+1}q.

Using the first qr digits of this vector, we can easily determine a random perturbation vector Δi.
According to algorithm (1), its coordinates of must be multiplied by the corresponding value of the
loss function at a perturbed point, i.e., by the value at the last r digits of the measurement result.

7. CONCLUSIONS

There are several deterministic and stochastic iterative methods of optimization. Our method is
superior in one respect—the loss function is measured only once in every iteration. Moreover, the
only condition is that measurement noises must not depend on the simultaneous test perturbation.

For problems requiring several measurements of the loss function in iterations, algorithms with
one measurement (for example, randomized algorithms with two or more measurements) are prefer-
able since they rapidly converge to the point of minimum. Nevertheless, there are problems for
which the one-measurement method is the only method. Therefore, the study of its applicability
range is imperative.

APPENDIX

Proof of Theorem 1. Let us consider algorithm (1). Using the properties of the function V (x),
from the mean-value theorem we obtain for some t ∈ (0, 1)

V (̂θn) = V

(

PΘn

(

̂θn−1 − αn

βn
Δnyn

))

≤ V

(

̂θn−1 − αn

βn
Δnyn

)

= V (̂θn−1) − αn

βn

〈

∇V (̂θmid),Δnyn

〉

= V (̂θn−1) − αn

βn

〈

∇V
(

̂θn−1 − t
αn

βn
Δnyn

)

,Δnyn

〉

= V (̂θn−1) − ρ
αn

βn

q
∑

i=1

∣

∣

∣

∣

̂θ
(i)
n−1 − θ

(i)
∗ − t

αn

βn
Δ(i)

n yn

∣

∣

∣

∣

ρ−1

sgn(i)
n (t)Δ(i)

n yn,

where sgn(i)
n (t) = 0 or ±1, depending on the sign of the expression

̂θ
(i)
n−1 − θ

(i)
∗ − t

αn

βn
Δ(i)

n yn.
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Since the inequality

− sgn(c− d)|c− d|ρ−1b ≤ −sgn(c)|c|ρ−1b+ 22−ρ|d|ρ−1|b|
holds for b, c, and d ∈ R, we obtain

V (̂θn) ≤ V (̂θn−1) − ρ
αn

βn

q
∑

i=1

∣

∣

∣

̂θ
(i)
n−1 − θ

(i)
∗
∣

∣

∣

ρ−1
sgn(i)

n (t)Δ(i)
n yn

+ 22−ρρ
αn

βn

q
∑

i=1

∣

∣

∣

∣

t
αn

βn
Δ(i)

n yn

∣

∣

∣

∣

ρ−1

|Δ(i)
n yn| ≤ V (̂θn−1)

− ρ
αn

βn

q
∑

i=1

∇V (̂θn−1)(i)Δ(i)
n yn + 22−ρρ

(

αn

βn

)ρ q
∑

i=1

|Δ(i)
n yn|ρ

= V (̂θn−1) − ρ
αn

βn

〈

∇V (̂θn−1),Δnyn

〉

+ 22−ρcn‖Δn‖ρ
ρ|yn|ρ. (+)

Since the mean-value theorem also holds for the function F (·,wn), from the observation model
we obtain for some t′ ∈ (0, 1)

Δnyn = Δn

(

F (̂θn−1 + βnΔn,wn) + vn

)

= ΔnF (̂θn−1,wn) + Δnvn + Δn

〈

∇xF (̂θn−1 + t′βnΔn,wn), βnΔn

〉

.

Applying the conditional expectation operation to the σ-algebra Fn−1, since the test perturbation
Δn does not depend on noises vn and vectors wn, we obtain

E{Δnvn|Fn−1} = E{Δn|Fn−1}E{vn|Fn−1} = 0,

E{ΔnF (̂θn−1,wn)|Fn−1} = E{Δn|Fn−1}F (̂θn−1,wn) = 0.

Consequently, the conditional expectation of the second term in formula (+) is

−ραn

βn
E
{〈

∇V (̂θn−1),Δnyn

〉

|Fn−1

}

= −ραn

βn

〈

∇V (̂θn−1),E{Δnyn|Fn−1}
〉

= −ραn

βn

〈

∇V (̂θn−1),E
{

Δn

〈

∇xF (̂θn−1 + t′βnΔn,wn), βnΔn

〉

|Fn−1

}〉

= −ραn

〈

∇V (̂θn−1),E
{

Δn

〈

∇xF (̂θn−1,wn),Δn

〉

|Fn−1

}〉

+ραn

∣

∣

∣

〈

∇V (̂θn−1),E
{

Δn

〈

∇xF (̂θn−1 + t′βnΔn,wn) −∇xF (̂θn−1,wn),Δn

〉

|Fn−1

}〉∣

∣

∣.

Since the function ∇xF (·,wn) is uniformly bounded, using the Holder inequality [20], condi-

tions (A.1) and (A.2), and the Young inequality [21] a1/rb1/s ≤ 1
r
a+

1
s
b, r > 1, a, b > 0,

1
r

+
1
s

= 1,
we sequentially obtain

−ραn

βn
E
{〈

∇V (̂θn−1),Δnyn

〉

|Fn−1

}

≤ −ραn

〈

∇V (̂θn−1),∇f(̂θn−1)
〉

+ραnV (̂θn−1)
ρ−1

ρ q1/ρ
∣

∣

∣E
{

〈∇xF (̂θn−1 + t′βnΔn,wn) −∇xF (̂θn−1,wn),Δn〉|Fn−1

}∣

∣

∣

≤ −ραnμV (̂θn−1) + αnρV (̂θn−1)
ρ−1

ρ q
2
ρM

∥

∥t′βnΔn

∥

∥ ρ
ρ−1

≤ −αnρμV (̂θn−1) + αnρ

(

ρ− 1
ρ

V (̂θn−1) +
1
ρ

)

q
ρ+1

ρ Mβn

≤ −αn

(

ρμ− βn(ρ− 1)q
ρ+1

ρ M

)

V (̂θn−1) + αnβnq
ρ+1
ρ M.
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Let us evaluate the third term in the right side of inequality (+). For some point xm on
the interval joining ̂θn−1 + βnΔn and θ∗, applying the mean-value theorem, Holder inequality,

condition (A.2), and inequality
(

a+ b

2

)ρ

≤ 1
2
(aρ + bρ), we obtain

∣

∣

∣F (̂θn−1 + βnΔn,wn)
∣

∣

∣

ρ
=
∣

∣

∣F (θ∗,wn) + 〈∇xF (xm,wn), ̂θn−1 + βnΔn − θ∗〉
∣

∣

∣

ρ

≤ 2ρ−1 max
w∈W

|F (θ∗,w)ρ| + 2ρ−1
(

∥

∥∇xF (xm,wn) −∇xF (θ∗,wn)
∥

∥ ρ
ρ−1

+ max
w∈W

∥

∥∇xF (θ∗,w)
∥

∥ ρ
ρ−1

)ρ

×
(

‖̂θn−1 − θ∗‖ρ + ‖βnΔn‖ρ

)ρ

≤ 2ρ−1 max
w∈W

|F (θ∗,w)|ρ + 23(ρ−1)

(

Mρdρ
n + max

w∈W

∥

∥∇xF (θ∗,w)
∥

∥

ρ
ρ

ρ−1

)

(

V (̂θn−1) + qβρ
n

)

.

Consequently, for the conditional expectation of the third term in (+), since Δn and vn are inde-
pendent, we obtain the estimate

22−ρcnE{‖Δn‖ρ|yn|ρ|Fn−1} = 22−ρcnE{‖Δn‖ρ|F (xn,wn) + vn|ρ|Fn−1}
≤ 2cnE{‖Δn‖ρ|Fn−1}(|F (xn,wn)|ρ + E{|vn|ρ|Fn−1})

≤ q22ρ−1cnψnV (̂θn−1) + 2ρqcn max
w∈W

|F (θ∗,w)|ρ + 23ρ−2q2βρ
nψn + 2qcnE{|vn|ρ|Fn−1}.

Using our notation and estimates obtained above, we can strengthen inequality (+) as

V (̂θn) ≤ V (̂θn−1)(1 − γn) + φn + 2qcnE{|vn|ρ|Fn−1}).

Taking the unconditional expectation of the left and right sides of the initial inequality, we obtain

E{V (̂θn)} ≤ E{V (̂θn−1)}(1 − γn) + φn + 2qcnσρ
n.

If these inequalities and the conditions of Theorem 1 hold, then all assertions of this theorem follow
directly from the corresponding assertions of [22]. This completes the proof of Theorem 1.
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