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Abstract: Accuracy for main class of Simultaneous Perturbation Stochastic Approximation (SPSA) procedures is

being researched. The model of observation is considered to be one of the most general among SPSA research.
The power of moments of expectation for which the estimates of the procedure do converge is lowerized from 2 to

1 (not including lower bound). The conditions for the convergence are presented, with additional generalisations

made about heavy-tailed noise and trial perturbation properties.
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1 Introduction

The interest to complex systems with different

kinds of uncertainties leads to non-classical meth-

ods of system identification and control. So called
stochastic control is highly discussed in contem-

porary science. Different approaches to model

systems with uncertainties do exist, each usually

leading to separate class of methods of control.

In this paper simultaneous perturbation stochas-
tic approximation (SPSA) group of methods is dis-

cussed, and the set of tasks for which these methods

are applicable is made wider.

Firstly we describe some typical closed-loop

discrete-time system. In these terms the task typi-

cally solved by SPSA can be easily formulated. So,

the system consists of object and controller. Uncer-
tainty is being expressed by wn and vn sequences,

first is about internal system undeterminism of be-

haviour, second is external noise which is added

to the true object output during measurement or
transfer of this discrete signal through some noisy

channel.

Following [6], we can divide optimization prob-
lem statement to offline, stochastic and online

classes. Offline statement is classical. The ap-

proach considered here is stochastic, where there

is one function F (x,w) being optimized, but it is

measurable with noise. Online statement of op-
timization problem is new and interesting. It as-

sumes that on each iteration new function is mea-

sured, but the cost function is formulated depend-

ing on all the functions, for example we need to

find point closest in average to minimum of all the
functions [6].

We continue investigations started in [3, 4] de-

scribing the types of convergence for the SPSA
procedures. The convergence of E{‖θ − θ̂n‖

ρ} for

ρ ∈ (1, 2] (moments of estimates of degree ρ) is be-

ing researched. Conditions from [7] are taken as

sufficient for SPSA in general. Additional assump-
tions of existence of ρ-moment of F (x,w), and some

complex condition((E) in Section 2) on vn and ∆n

should be satisfied for the results of the paper.

We try to develop SPSA algorithms theoretical

framework in the very general form. Instead of as-

sumption of triple-differentiable F as it is in [8], we

consider only one-time differentiable F . Also, the
simultaneous perturbation vector should be of the

form Kn(∆n) where ∆n is Bernoulli random vector

and Kn is vector-function (kernel) with some con-

dition on it instead os straight usage of Bernoulli

random variables in [8]. The model with two kinds
of uncertainty is also more general than preseted

in [8] and [9], and we believe that SPSA technique

becomes more useful with these generalisations.

In [3] this convergence was proved for SPSA

procedure with one measurement. Using the same

approach, in [4] convergence for two-measurement

per iteration is proved. Here we present these re-
sults together with another procedure of this class

convergence result, deliver common framework for

such methods and add some generalisations, dis-

cussed in [7] but not provided in [3, 4]



2 Problem statement and

SPSA algoritms

Let F (x,w) : R
q × R

p → R
1 — be differ-

entiable by the first argument function, x1, x2, . . .

— is chosen by author of experiment sequence of

points for measurement (plan of experiment), in

which at every moment n = 1, 2, . . . value of a func-
tion F (·, wn) is available with additive disturbances

vn.

yn = F (xn, wn) + vn, (1)

where {wn} — uncontrolable sequrnce of random

values from R
p, having equal, but unknown distri-

bution Pw(·).

Problem. It is needed to construct using obser-
vations y1, y2, . . . a sequence of estimates {θ̂n} of

unknown vector θ, minimizing a function

f(x) = Ew{F (x,w)} =

∫
Rp

F (x,w)Pw(dw)

of average cost functional type.

Usually the problem of minimization of func-
tion f(·) with simpler model of observations is dis-

cussed:

yn = f(xn) + vn, (2)

which easily suits to the proposed scheme. More

complicated model

yn = wnf(xn) + vn, (3)

which suits the general model with F (x,w) =

wf(x), was earlier investigated in [10].

When distribution Pw(·) is unknown, the prob-

lem discussed is outside the scope of classical opti-
mization theory.

If measurements of function F (xn, wn) are

done in fact with some additive random centered

independent noise vn ∈ R, then this extra complex-
ity us not principal. Adding to vector w additional

component v and denoting

w̄ =

(
w
v

)
,

it is possible to use instead of F (x,w) another func-

tion

F̄ (x, w̄) = F (x,w) + v

with observation scheme without additional dis-

turbances and new common unknown distribution

Pw,v(·) instead Pw(·), which was unknown before.
If noise added by measurement doesn’t have good

statistical properties, then it is impossible to sim-

plify the problem. It is needed to use a model with

additional disturbances vn.

Let us denote simultaneous perturbation as

∆n ∈ R
q;

{αn} and {βn} are sequences of positive num-
bers, tending to zero; θ̂0 ∈ R

q is a fixed initial

vector. To construct the sequnces of points for

measurements {xn} and estimates {θ̂n} three al-

gorithms are proposed. First uses one observation

to build an estimate:

xn = θ̂n−1 + βn∆n, yn = F (xn, wn) + vn ,

θ̂n = θ̂n−1 −
αn

βn
Kn(∆n)yn,

(4)

second and third use 2 observations on each itera-

tion:

x2n = θ̂n−1 + βn∆n, x2n−1 = θ̂n−1 − βn∆n,

θ̂n = θ̂n−1 −
αn

2βn
Kn(∆n)(y2n − y2n−1),

(5)



x2n = θ̂n−1 + βn∆n, x2n−1 = θ̂n−1,

θ̂n = θ̂n−1 −
αn

βn
Kn(∆n)(y2n − y2n−1).

(6)

In all three algorithms some vector-functions

(kernels) are used: Kn(·) : R
q → R

q,

which satisfy together with distributions of si-

multaneous perturbation Pn(·) the conditions:∫
Kn(x)Pn(dx) = 0,

∫
Kn(x)xTPn(dx) = I, (7)

where I is a q-dimensional unit matrix.

Algorithm (4) with function Kn(∆n) = ∆n was
primary founded by O. N. Granichin in the pa-

per [11] for constructing a sequence of estimates,

well-founded in almost arbitrary noise in observa-

tions. B. T. Polyak and A. B. Tsybakov inves-

tigated in [12] both algorithms (4) and (5) with
vector-function Kn(·) of general form in situation of

uniform testing perturbation and with assumption

about independency and centralisation of observa-

tion noise. J. Spall [13] used algorithm (5) in case
of distribution of trial perturbation with finite in-

verse moments and vector-function Kn(·), defined

by rule:

Kn(∆n) =




1

∆
(1)
n
1

∆
(2)
n

...
1

∆
(q)
n


 .

With same vector-funcrtion Kn(·) and con-

straints on distribution of trial simultaneous per-

turbation H.-F. Chen and others in paper [14] was

proposed to use algorithm(6).



We will use instead of algorithm (4) slightly

different one with projection when we formulate

the main result:



xn = θ̂n−1 + βn∆n, yn = F (xn, wn) + vn ,

θ̂n = PΘn
(θ̂n−1 −

αn

βn
Kn(∆n)yn),

(8)

for which it is more comfortable to prove. In

this algorithm PΘn
(·) are projecting operators on

some convex closed bounded subsets Θn ⊂ R
q,

which contain, starting from some n ≥ 1, the an-

swer point θ. If the bounded closed convex set Θ:

θ ∈ Θ is known, then we can decide that Θn = Θ.

In other case sets {Θn} can be wider each time up
to infinity.

Some specifics of the task can allow to con-

struct decreasing sequence {Θn}.

3 Main conditions

Consider ρ ∈ (1, 2]. We will use following no-

tation: E{·} — for expectation; ‖ · ‖, ‖ · ‖ρ and

(·, ·) — for Euclidean norm, norm in lρ space and
scalar product in R

q; Fn−1 — is for σ-algebra of

probabilistic events, derived from random values

θ̂0, θ̂1, . . . , θ̂n−1, constructed by algorithm (5) (or

(6), or (8)); using algorithms (5) or (6)

w̄n =

(
w2n

w2n−1

)
, v̄n = κ(v2n − v2n−1),

κ =

{
1
2 , for (5),

1, for (6),

Fw = max
x∈Rq

Ew′{Ew′′{κρ|F (x,w′) − F (x,w′′)|ρ}},

and when constructing estimates by algorithm (8)

v̄n = vn, w̄n = wn, Fw = Ew{|F (θ, w)|ρ}.

Consider a function

V (x) = ‖x−θ‖ρ
ρ =

∑q
i=1 |x

(i)−θ(i)|ρ,

where θ — is an optimal vector which we need to

find.

Let’s formulate main assumptions.

(A) Function f(x) has a unique minimum and

(∇V (x),∇f(x)) ≥ µV (x), ∀x ∈ R
q

with some constant µ > 0.

(B) ∀w gradients of functions F (·, w) satisfy the

condition

‖∇xF (x,w)−∇xF (y, w)‖ρ ≤M‖x−y‖ρ, ∀x, y ∈ R
q

with some constant M > 0.

(C) Local condition of Lebesgue for ∇xF (x, ·) :

∀x ∃ neighbourhood Ux : ∀x′ ∈ Ux ∃ function

Φx(·) : R
p → R, Ew{Φx(w)} <∞ :

|∇xF (x′, w)| ≤ Φx(w) for almost all w.

(D) For Kn(·) and Pn(·), n = 1, 2, . . . conditions
are satisfied:

K̄ = Fw sup
n=1,2,...

∫
‖Kn(x)‖ρ

ρPn(dx) <∞,

K̃ = sup
n=1,2,...

∫
‖Kn(x)‖ρ‖x‖ρ‖x‖ ρ

ρ−1
Pn(dx) <∞.

(E) For every n ≥ 1

ξn = ‖E{Kn(∆n)v̄n|Fn−1}‖
ρ
ρ ≤ C∆vβ

2
n,

E{‖Kn(∆n)v̄n‖
ρ
ρ} ≤ σρ

n.

In case of ρ = 2 conditions (A) and (B) have
the same form as it was in earlier papers (for ex-

ample, [10]):

(A’) — function f(·) is strictly convex, that is

〈x− θ,∇f(x)〉 ≥ µ‖x− θ‖2, ∀x ∈ R
q.

(B’)— Lipschitz condition for gradients of func-
tions F (·, w): ∀x, θ ∈ R

q

‖∇xF (x,w) −∇xF (y, w)‖ ≤M‖x− θ‖.

4 Convergence of the se-

quence of estimates

Denote:
νn = 2ραρ

nβ
−ρ
n ,

γn = αnρµ− αn(βnc(ρ− 1) + δnM
ρ)

φn = αnβnc+ 2ρ−1K̄νn + χn, c = MK̃ + C∆v,

χn =

{
21−ρηn + ψn, for(5), (6)

ηn + 21−ρψn, for(8)

K(x) = 23ρ−2

{
‖x‖ρ

ρ
ρ−1

for(5), (6)

(diam(Θn)
βn

+ ‖x‖ ρ
ρ−1

)ρ, for(8)

ψn = αnδnEw{‖∇xF (θ, w)‖ρ
ρ},

δn = αρ−1
n ρ

∫
‖Kn(x)‖ρ

ρK(x)Pn(dx),
ηn = ραρ

nβ
ρ
nM

ρ
∫
‖Kn(x)‖ρ

ρ‖x‖
ρ
ρK(x)Pn(dx),

diam(·) — Euclidean diameter of a set in metrics

l ρ
ρ−1

.



T h e o r e m 1 . Let be ρ ∈ (1, 2] and the

conditions are satisfied:

(A–C); (7); random values {v̄k, w̄k,∆k}
n−1
k=1 do

not depend on w̄n è ∆n, and random vector wn

does not depend on ∆n;

∀n, 0 ≤ γn ≤ 1,
∑

n γn = ∞, µn → 0 with

n→ ∞, where

µn =
φn + νnσ

ρ
n

γn
, zn =

(
1 −

µn+1

µn

)
1

γn+1
.

Then: 1) sequence of estimates {θ̂n}, given by

algorithm (8) (or (5), or (6)), converges to a point

θ in following sense: E{V (θ̂n)} → 0 when n→ ∞;

2) if limn→∞ zn ≥ z > 1, then E{V (θ̂n)} =

O
(∏n−1

i=0 (1 − γi)
)
;

3) if zn ≥ z > 1 ∀n, then E{V (θ̂n)} ≤

(E{V (θ̂0)} + µ0

z−1 )
∏n−1

i=0 (1 − γi);

4) if, moreover,
∑

n φn +
νnE{‖Kn(∆n)v̄n‖

ρ
ρ|Fn−1} <∞ a. s.,

then θ̂n → θ while n→ ∞ a. s. and

P{∀n ≥ n0 V (θ̂n) ≤ ε} ≥

≥ 1 −
E{V (θ̂n0)} +

∑
∞

n=n0
φn + νnσ

ρ
n

ε
.

Proof of the theorem 1 can be found in the last
section.

Note 1. For function F (x,w) = wf(x) con-

ditions (A)–(C) of the theorem 1 are satisfied, if

function f(x) satisfies the conditions (A) è (B).

Note 2. In [3, 4] are formulated close results

about accuracy of estimation and speed of conver-

gence of algorithms (8) and (5).

Note 3. The problem of estimation of param-
eters in linear regression model with observations

(3) when θn = θ corresponds to minimization of a

functional of average risk

f(x) =
1

2
(x− θ)T(x− θ).

Note 4. In the theorem 1 noise vn in obser-

vations can be called almost arbitrary, because it
may be not random (determined), but unknown

and bounded, or be a realisation of some stochas-

tic process with arbitrary structure of dependen-

cies. In particular, for proving the the statements

of the theorem 1 there is no need to assume any-
thing about dependencies between v̄n and Fn−1.

Note 5. Although algorithms (5) and (6) seem

to be similar,in case of arbitrary noise in observa-

tions the use of the second in real time systems is

better.

For algorithm (5) satisfaction of the condition

about independency of the noise v2n from trial per-

turbation ∆n is quite strict, because at the moment
2n− 1 vector ∆n has been already used in the sys-

tem. Using the algorithm (6) noise v2n and vector

of trial perturbation ∆n enter the system simul-

taneously, what allows to hope on their indepen-

dency.
Note 6. For another generalisation of condi-

tions of convergence for the algorithms (5), (6)

and (8) sequences {αn} and {βn} can be ran-

dom, measurable relatively σ-algebra Fn . Prac-
tical need in such deneralisation appear, for in-

stance, when, in parallel with computation of es-

timates by SPSA algorithm additional conditions

of the task give information about the quality of

estimation. If estimates are “bad”, then it is possi-
ble to make the speed of convergence of sequence

{αn} to zero lower, maybe make the values of the

sequence bigger for a while. Note 7 The general-

isation about noise properties, namely existence of
ρ ∈ (1, 2]-moments for w, clarifies that SPSA-class

algorithms can be used in almost-heavy-tailed noise

case. The middle value of three independent identi-

cally distributed heavy-tailed random variables sat-

isfies heavy tail property.

5 Proof of the Theorem 1

We denote for the algorithm (8): ȳn = yn, for (5):
ȳn = (y2n − y2n−1)/2, for (6): ȳn = y2n − y2n−1.

For estimates of the algorithm (8) applying the
projector properties we get V (θ̂n) = V (PΘn(θ̂n−1 −
αn

βn
Kn(∆n)ȳn)) ≤ V (θ̂n−1 − αn

βn
Kn(∆n)ȳn). For other

algorithms’ estimates we get equality. Using properties
of chosen function V (x), from middle-value theorem
with some t ∈ (0, 1) we sequentially derive:

V (θ̂n) ≤ V (θ̂n−1) −
αn

βn

(∇V (θ̂mid),Kn(∆n)ȳn) =

V (θ̂n−1) −
αn

βn

(∇V (θ̂n−1 − t
αn

βn

Kn(∆n)yn),

Kn(∆n)ȳn) = V (θ̂n−1) − ρ
αn

βn

qX

i=1

˛̨
˛̨θ̂(i)

n−1 − θ(i)−

−t
αn

βn

Kn(∆n)(i)ȳn

˛̨
˛̨
ρ−1

sign(i)
n

(t)Kn(∆n)(i)ȳn,

where sign(i)
n

(t) = 0 or ±1 depending on the sign

of expression θ̂
(i)
n−1 − θ(i) − tαn

βn
Kn(∆n)(i)ȳn. Denote

gsign(i)

n−1 = 0 or ±1 depending on the sign of θ̂
(i)
n−1−θ(i).

Next, using the inequality

−sign(c−d)|c−d|ρ−1b ≤ −sign(c)|c|ρ−1b+22−ρ|d|ρ−1|b|

for all b, c, d ∈ R, we get:

V (θ̂n) ≤ V (θ̂n−1) − ρ
αn

βn

qX

i=1

˛̨
˛̨θ̂(i)

n−1 − θ(i)

˛̨
˛̨
ρ−1

·



·gsign(i)

n−1Kn(∆n)(i)ȳn + 22−ρρ
αn

βn

·

·

qX

i=1

˛̨
˛̨tαn

βn

Kn(∆n)(i)ȳn

˛̨
˛̨
ρ−1

|Kn(∆n)(i)ȳn| ≤

≤ V (θ̂n−1) −
αn

βn

qX

i=1

∇V (θ̂n−1)
(i)Kn(∆n)(i)ȳn+

+22−ρρ

„
αn

βn

«
ρ qX

i=1

|Kn(∆n)(i)ȳn|
ρ.

Consequently, we get:

V (θ̂n) ≤ V (θ̂n−1) −
αn

βn

(∇V (θ̂n−1),Kn(∆n)ȳn)+

+22−ρνn‖Kn(∆n)ȳn‖
ρ

ρ
. (9)

From the model of observations (1), concidering
middle-value theorem for the function F (·, wn), we de-
rive with some t′, t′′ ∈ (0, 1) next formula:

ȳn = F̄n(0, 0) + F̄ ′

n
(t′, t′′) + v̄n,

where for algorithms (8), (5) and (6) we denote:

F̄n(t′, t′′) =

8
>>>>>><
>>>>>>:

F (θ̂n−1 + t′βn∆n, wn), (8)
1
2
(F (θ̂n−1 + t′βn∆n, w2n)−

− F (θ̂n−1 − t′′βn∆n, w2n−1)), (5)

F (θ̂n−1 + t′βn∆n, w2n)−

− F (θ̂n−1, w2n−1), (6)

and

F̄ ′

n
(t′, t′′) =

∂F̄n(t′, t′′)

∂t′
+

∂F̄n(t′, t′′)

∂t′′
.

Let’s use expectation operation relatively σ-
algebra Fn−1.

From independence Kn(∆n) from w̄n and symme-
try of distribution Pn(·) (condition (7)) we get

E{Kn(∆n)F̄n(0, 0)|Fn−1} = 0.

Consequently, for conditional expectation of second
term in formula (9) we sequentially get

−
αn

βn

E{(∇V (θ̂n−1),Kn(∆n)ȳn)|Fn−1} ≤

≤ −
αn

βn

(∇V (θ̂n−1), E{Kn(∆n)F̄ ′

n
(t′, t′′)|Fn−1})+ (10)

+
αn

βn

|(∇V (θ̂n−1), E{Kn(∆n)v̄n|Fn−1})|.

Using Hölder inequality [19] (p. 129), Jensen [19]
(p. 210), Yung [20] (p. 280): a1/rb1/s ≤ 1

r
a+ 1

s
b, r > 1,

a, b > 0, 1
r

+ 1
s

= 1, and condition (E), for the last
term we get an upper bound

αn

βn

|(∇V (θ̂n−1), E{Kn(∆n)v̄n|Fn−1})| ≤ (11)

ρ
αn

βn

V (θ̂n−1)
ρ−1

ρ × ‖E{Kn(∆n)v̄n|Fn−1}‖ρ ≤

≤ αnβnC∆v

“
(ρ − 1)V (θ̂n−1) + 1

”
.

Using the independence of w̄n and ∆n, local
Lebesgue condition (C) for ∇xF (θ̂n−1, ·) and condi-
tion (7), also get

∇f(θ̂n−1) = E{∇xF (θ̂n−1, w)|Fn−1} =
β−1

n
E{Kn(∆n)F̄ ′

n
(0, 0)|Fn−1}.

Denote the difference F̃ ′

n
= F̄ ′

n
(t′, t′′) − F̄ ′

n
(0, 0)

and estimate it’s abcolute value. Considering condi-
tion (B) and the fact that t′ ∈ (0, 1), for the algo-
rithm (8) derive |F̃ ′

n
| = |(∇xF (θ̂n−1 + t′βn∆n, wn) −

∇xF (θ̂n−1, wn), βn∆n)| ≤
≤ βn‖∆n‖ ρ

ρ−1
‖∇xF (θ̂n−1 + t′βn∆n, wn)−

−∇xF (θ̂n−1, wn)‖ρ ≤ Mβ2
n
‖∆n‖ρ‖∆n‖ ρ

ρ−1
.

For algorithms (5) and (6) the same formula can
be derived analogously.

From the last formula, bounding the scalar product
in the first term of (10), from conditions (A)—(D) and
inequalities of Hölder, Jensen, Yung we get

(∇V (θ̂n−1), E{Kn(∆n)F̄ ′

n
(t′, t′′)|Fn−1}) =

βn(∇V (θ̂n−1),∇f(θ̂n−1)) + (∇V (θ̂n−1),

E{Kn(∆n)F̃ ′

n
|Fn−1}) ≥ βnµV (θ̂n−1)−

−ρV (θ̂n−1)
ρ−1

ρ E{‖Kn(∆n)‖ρ|F̃
′

n
| |Fn−1}) ≥

≥ βnµV (θ̂n−1) − Mβ2
n
ρ

„
ρ − 1

ρ
V (θ̂n−1) +

1

ρ

«

E{‖Kn(∆n)‖ρ‖∆n‖ρ‖∆n‖ ρ
ρ−1

} ≥

≥ βnµV (θ̂n−1) − β2
n
MK̃

“
(ρ − 1)V (θ̂n−1) + 1

”
(12)

Then, from (11) and (12) for conditional expecta-
tion of the second term in formula (9), to continue (10),
get,

· · · ≤ −αnρµV (θ̂n−1) + αnβn(MK̃ + C∆v)·

·
“
(ρ − 1)V (θ̂n−1) + 1

”
. (13)

Let’s bound the conditional expectation of the
third term in right side of inequality (9). Using Jensen
inequality ( a+b

2
)ρ ≤ 1

2
(aρ + bρ) for convex function xρ,

we get

21−ρνnE{‖Kn(∆n)ȳn‖
ρ

ρ
|Fn−1} ≤ νnE{‖Kn(∆n)·

·F̄n(1, 1)‖ρ

ρ
|Fn−1} + νnE{‖Kn(∆n)v̄n‖

ρ

ρ
|Fn−1}. (14)

For algorithms (5) and (6) we get |F̄n(1, 1)|ρ ≤
2ρ−1

`
|F̄n(0, 0)|ρ + |F̄ ′

n
(t′, t′′)|ρ

´
≤ 2ρ−1|F̄n(0, 0)|ρ +

2ρ−1|F̄ ′

n
(t′, t′′) + Fθ − Fθ|

ρ ≤ 2ρ−1|F̄n(0, 0)|ρ +
22ρ−2(|Fθ|

ρ + |F̄ ′

n
(t′, t′′) − Fθ|

ρ) using

Fθ =

(
1
2

`
(∇F (θ, w2n) + ∇F (θ, w2n−1)), βn∆n

´
, for (5),`

∇F (θ, w2n), βn∆n

´
, for (6),

From this, using Hölder inequality [19] (p.
129) and conditions (B), (D), continue (14)
· · · ≤ αnδn(V (θ̂n−1) + Ew{‖∇xF (θ, w)‖ρ

ρ
}) +

22ρ−2K̂Mρνnβ2ρ

n
+ 2ρ−1K̄νn + νnξn ≤

≤ αnδnMρV (θ̂n−1) + 2ρ−1K̄νn + χn + νnξn. (15)

In case of the algorithm (8) for some point xm,
which belongs to a segment between θ̂n−1 + βn∆n and
θ, from the middle-value theorem and Jensen inequality
we get:

|F̄n(1, 1)|ρ = |F (θ, wn) + (∇xF (xm, wn), θ̂n−1+



βn∆n − θ)|ρ ≤ 2ρ−1|F (θ, wn)|ρ+

+22ρ−2(‖∇xF (xm, wn) −∇xF (θ, wn)‖ρ

ρ
+

+‖∇xF (θ, wn)‖ρ

ρ
)(‖θ̂n−1 − θ‖ ρ

ρ−1
+

+‖βn∆n‖ ρ
ρ−1

)ρ ≤ 2ρ−1|F (θ, wn)|ρ+

+22ρ−2

„
2ρ−1Mρ

`
V (θ̂n−1) + βρ

n
‖∆n‖

ρ

ρ

´
+

+‖∇xF (θ, wn)‖ρ

ρ

«
βρ

n
K(∆n).

From last inequality for the algorithm (8) we get
the same inequality (15).

Using the discussed notation and the bounds got
above (13) and (15), inequalities(9) we can change on

V (θ̂n) ≤ (1 − γn)V (θ̂n−1) + φn + νnξn.

Using the unconditional expectation from left and right
sides of the last inequality, we get inequalities

E{V (θ̂n)} ≤ (1 − γn)E{V (θ̂n−1)} + φn + νnσρ

n
,

from which the statements of the theorem 1 can be
easy derived from corresponding [12] statements of the
theorem 1.

Proof of the theorem 1 finished.
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