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Abstract— Simultaneous perturbation stochastic approxima-
tion method was shown to be superior over finite difference
(Kiefer-Wolfowitz) method in case of unknown but bounded
additive measurement noise. This paper is devoted to analysis
of the behaviour of these methods in case of multiplicative noise
and fixed step sizes. It gives theoretical bounds for the mean
squared error and variance after finite number of iiterations for
finite difference and simultaneous perturbation methods. The
multiplicative noise is present in cost functions in many different
fields, and ability to cope with them is a good side of for an
optimization method. Fixed step size algorithms are easy to
implement and analyze as well as can be used in nonstationary
optimization problems. The simulation includes the case when
the algorithms’ parameters are chosen as theoretically optimal
and the case when they are chosen as practically giving the best
results after finite number of iterations. Comparative analysis
shows similar performance of both methods in terms of mean
squared error and slightly better performance of SPSA in terms
of variance. Simulation results are provided to illustrate the
theoretical contributions.

I. INTRODUCTION

Stochastic approximation procedures are widely used in
different fields such as control, machine learning, signal
processing etc. Since the first publication of Robbins and
Monro [1], a lot of research effort was devoted to study iter-
ative procedures with noisy inputs aiming at finding roots of
functions or their extremal points. Finite-difference method
for finding a minimum using stochastic approximation was
proposed by Kiefer and Wolfowitz in 1952 [2]. However, not
all the theoretical results are ready to be applied in computers
and technology due to the fact that most of SA procedures
rely on absolutely diverging and diminishing sequences of
step sizes which cannot be implemented in computers with
finite number of registers. The algorithms with fixed step
sizes are easier to implement, more robust, however they
require new theoretical approaches.

In the late 1980s simultaneous perturbation stochastic
approximation-type procedures were proposed by several
authors [3], [4]. This paper is devoted to comparison of so
called finite difference (FD) and simultaneous perturbation
(SP) stochastic approximation (SA) procedures [3], [4] in
case of finite step size and multiplicative noises giving
theoretical bounds for estimation errors and estimates vari-
ances on finite horizon analogously to what was done for
diminishing step sizes in [3]. To our knowledge, this paper
for the first time gives bounds for the estimates’ variance for
SPSA-type algorihm with finite step size.

1Alexander Vakhitov is with Faculty of Mathematics and Mechanics, St.
Petersburg State University, 198504 Universitetsky pr., 28, Stary Peterhof,
St. Petersburg, Russia a.vakhitov@spbu.ru

Granichin proved that the SPSA method converges in
case of arbitrary but bounded additive noise opposite to
FDSA which make biased gradient estimates in this case
[4]. Polyak and Tsybakov [5] proved asymptotically optimal
convergence rate of SPSA-type procedures in a class of
zero order optimization algorithms minimizing cost functions
measured with additive noises. SPSA became a popular and
used technique in the field of control (especially model-free
control) as well as statistics, game theory [6].

Application of SPSA-type procedures to global optimiza-
tion was studied in [7] and [8]. It was shown that due
to smoothing properties of randomized observations it is
possible to minimize functions with plenty of minima like
Griewank function, and some theoretical conditions on con-
vergence in average were given.

Finite-step SPSA-type procedures were applied to a prob-
lem of minimum tracking when a cost function changes in
time and the minimum estimate needs to be continuously
re-adjusted, like in extremal control setting [9]. This type
of problems prohibits the use of diminishing step-size se-
quences. The results from this paper can be generalized to
be used in tracking problems.

The importance of a case when measurements of function
values are done with multiplicative noises can be illustrated
as follows. If we consider a strongly convex function f (x)
then its values give us knowledge about the distance from
some point x in space to a minimum point. If we have some
measurement noise, and the noise amplitude grows if we go
further and further from the minimum point, then we can
formulate this noise as multiplicative:

y = w f (x) = f (x)+(w−1) f (x),

where we denote measurement as y, point as x, multiplicative
noise as w, Ew = 1, and the ”additive” noise component
growing with distance is therefore ε = (w−1) f (x). Similar
effect appears in non-linear least squares problems where we
need to fit functions φi(x) to measurements di corrupted by
noise vi. In this case cost function takes the form such as

y = ∑
i
(di−φi(x)+ vi)

2 =

= ∑
i
{(di−φi(x))2 +2vi(di−φi(x))+ v2

i }.

From this formula we see that noise has not additive, but
multiplicative nature here. Comparative study of the SPSA
and FDSA algorithms in case of multiplicative noises is
interesting also because it is well known [4] that these
algorithms differ in working with additive noises, however
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their performance in case of multiplicative noise was up to
now unknown.

II. PROBLEM STATEMENT

The problem is to find an estimate of the point of minimum
of the function f (x) using measurements made at points
xn ∈Rq, n ∈N freely chosen by the optimization algorithm.
These measurements are corrupted by additive noise vn and
multiplicative niose wn which has expected value equal to 1
and finite variance σ2

w:

yn = wn f (xn)+ vn.

We denote as θ∗ the minimum point of f .
We will make the following assumptions:
Assumption 1. Strong convexity of f (x)

〈∇ f (x)−∇ f (y),x− y〉 ≥ µ‖x− y‖2,

where µ > 0 is constant of strong convexity .
Assumption 2. Gradient of f (x) satisfies Lipshitz property:

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, L > 0

Assumption 3. Function value is bounded at minimum
point:

| f (θ∗)|< f∗ < ∞.

Assumption 4. Random perturbation ∆n used in SPSA
algorithm is a Bernoulli vector with i.i.d. components which
take values +1 or -1 with equal probability.

Assumption 5. Additive noise

E|v+n − v−n |< σ
1
v , E|v+n − v−n |2 < σ

2
v ,

where v+n ,v
−
n are consequent realizations of the additive

noise. This noise can be just bounded but not random.
Assumption 6. Multiplicative noise wn has bounded first

and second moments and known expected value:

E|wn|< σ
1
w, E|wn|2 < σ

2
w,Ewn = 1,

wn are i.i.d. for n ∈ N.
Assumption 7. The domain of possible argument values is

a bounded convex set Ω, and exists a ball containing it of
radius R < ∞ with a center in θ∗:

x ∈Ω =⇒ ‖x−θ∗‖< R

III. ALGORITHMS

In this paper we compare two zero-order optimization
algorithms. First is finite difference stochastic approximation
proposed by Kiefer and Wolfowitz [2] with fixed step size:

θ̂n = θ̂n−1−αkn(θ̂n−1,β ), (1)

where

k(i)n (θ̂n,β ) =
1

2β
(wi+

n f (θ̂n +βei)−wi−
n f (θ̂n−βei)+

+vi+
n − vi−

n ), i = 1 . . .q,

β > 0 is the trial step size, ei is the i-th canonical basis
element.

Second algorithm is two measurements SPSA-type algo-
rithm with fixed step size:

θ̂n = θ̂n−1−αgn(θ̂n−1,β ,∆n), (2)

where

gn(θ̂n,β ,∆n) =
∆n

2β
(w1

n f (θ̂n +β∆n)−w2
n f (θ̂n−β∆n)+

+v+n − v−n ),

and ∆n is decsribed in assumption 4.
For the both algorithms, θ̂0 is chosen arbitrarily. In the

algorithms’ comparison (following [3]) we fix the number
of measurements made by the algorithm during the run.

Denote as En{·} the expectation conditioned on the past
observations:

En{·}= E{·|yn−1,yn−2, ...}.

The measurement point and the estimate belong to the ball
around the minimum point which is defined as ‖x−θ∗‖< R.

IV. CONVERGENCE AND VARIANCE

Theorem 1. Mean squared error for FDSA with fixed
step size. Denote

k= 1−2αµ+
((

q
L2R2 +4 f∗L

8β 2 +
(q+2)L2

4
+

q
2

)
σ

2
w+L2

)
α

2,

h = α
2
(

qβL2 +

√
qσ1

v L
β

)
+α
√

qL,

l = α
2
(

q
2 f 2
∗σ2

w +σ2
v

4β 2 +
qσ2

w +2q2

8
β

2L2 +
q f∗σ2

wL
2

+

+
q3/2σ1

v L
2

)
For the algorithm (1) in the assumptions stated above if k+

ε/2 ∈ (0,1) for some sufficiently small ε > 0 the estimates
θ̂n satisfy the following inequalities:

E‖θ̂n−θ∗‖2 ≤ (k+ ε/2)n‖θ̂0−θ∗‖2+

+
(h2/(2ε)+ l)(1− (k+ ε/2)n)

1− k− ε/2
,

lim sup
n→∞

(E‖θ̂n−θ∗‖2)1/2≤ h
2(1− k)

(1+
√

1+4l(1− k)h−2).

Proof.

‖θ̂n+1−θ∗‖2 = ‖θ̂n−θ∗‖2−2α〈θ̂n−θ∗,kn(θ̂n,β )〉+

+α
2‖kn(θ̂n,β )‖2.

• ‖kn(θ̂n,β )‖2:

‖kn(θ̂n,β )‖2 = (2β )−2{
(
(w(1)

i,n −1) f (θ̂n +βei)
)q

i=1
+

+
(
(1−w(2)

i,n ) f (θ̂n−βei)
)q

i=1
+

+
(

f (θ̂n +βei)− f (θ̂n−βei)
)q

i=1
+
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+v+n − v−n }2

En{‖kn(θ̂n,β )‖2}= (2β )−2
(

En{σ2
w

q

∑
i=1

( f 2(θ̂n +βei)+

+ f 2(θ̂n−βei))+‖( f (θ̂n +βei)− f (θ̂n−βei))
q
i=1‖

2+

+qσ
2
v +2σ

1
v
√

q‖( f (θ̂n +βei)− f (θ̂n−βei))
q
i=1‖

)
.

En(2β )−2
σ

2
w

q

∑
i=1

f 2(θ̂n +βei)+ f 2(θ̂n−βei)≤

≤
(

q
L2R2 +4 f∗L

8β 2 +
(q+2)L2

4

)
σ

2
w‖θ̂n−θ∗‖2+ (3)

+
q f 2
∗σ2

w

2β 2 +
q f∗σ2

wL
2

+
qβ 2σ2

wL2

8

(2β )−2‖
(

f (θ̂n +βei)− f (θ̂n−βei)
)q

i=1
‖ ≤

≤ L
2β
‖θ̂n−θ∗‖+

qL
4
.

(2β )−2‖
(

f (θ̂n +βei)− f (θ̂n−βei)
)q

i=1
‖2 ≤

≤ L2‖θ̂n−θ‖2 +qβL2‖θ̂n−θ∗‖+
q2β 2L2

4
.

En{‖kn(θ̂n,β )‖2}≤
((

q
L2R2 +4 f∗L

8β 2 +
(q+2)L2

4

)
σ

2
w+

+L2
)
‖θ̂n−θ∗‖2 +

(
qβL2 +

√
qσ1

v L
β

)
‖θ̂n−θ∗‖+

+q
2 f 2
∗σ2

w +σ2
v

4β 2 +
qσ2

w +2q2

8
β

2L2+
q f∗σ2

wL
2

+
q3/2σ1

v L
2

.

• −〈θ̂n−θ∗,kn(θ̂n,β )〉:

−〈θ̂n−θ∗,kn(θ̂n,β )〉≤−µ‖θ̂n−θ∗‖2+
Lβ

2
√

q‖θ̂n−θ∗‖.

We have finally proved the following bound:

En‖θ̂n−θ∗‖2 ≤ k‖θ̂n−1−θ∗‖2 +h‖θ̂n−θ∗‖+ l.

For some sufficiently small ε > 0 such that k+ ε/2 < 1,

En‖θ̂n−θ∗‖2 ≤ (k+ ε/2)‖θ̂n−1−θ∗‖2 + l +h2/(2ε
2).

Let us denote en = (E‖θ̂n−θ∗‖2)1/2.
If we take the unconditional expectation on the both sides

of the last equation, in the same way as in [9], we get

e2
n ≤ (k+ ε/2)ne2

0 +
(h2/(2ε)+ l)(1− (k+ ε/2)n)

1− k− ε/2
,

lim sup
n→∞

en ≤
h

2(1− k)
(1+

√
1+4l(1− k)h−2).

QED

Theorem 2. Variance for FDSA with fixed step size.
Denote

k = 1−2αµ +α
2
(

q
L2R2 +4 f∗L

8β 2 +
L2

2β
+

q
2

)
σ

2
w,

h = αβ
√

qL,

l = α
2(

2q f 2
∗σ2

w +qσ2
v

4β 2 +
q f∗σ2

wL
2

+
qβ 2σ2

wL2

8
).

For the algorithm (1) in the assumptions stated above
if k + ε/2 ∈ (0,1) for some sufficiently small ε > 0 the
variance E‖θ̂n−Eθ̂n‖2 of estimates θ̂n satisfies the following
inequalities :

E‖θ̂n−Eθ̂n‖2 ≤ (h2/(2ε)+ l)(1− (k+ ε/2)n)

1− k− ε/2
,

lim sup
n→∞

(E‖θ̂n−Eθ̂n‖2)1/2 ≤ h
2(1− k)

(1+

+
√

1+4l(1− k)h−2).

Proof.

E‖θ̂n+1−Eθ̂n+1‖2 = ‖θ̂n−Eθ̂n‖2−2αE〈θ̂n−Eθ̂n,

kn(θ̂n,β )−Ekn(θ̂n,β )〉+α
2E‖kn(θ̂n,β )−Ekn(θ̂n,β )‖2.

(4)

E〈θ̂n−Eθ̂n,kn(θ̂n,β )−Ekn(θ̂n,β )〉 ≥ µE‖θ̂n−Eθ̂n‖2−

−√q(
βL
2

+σ
1
v )E‖θ̂n−Eθ̂n‖.

The third term of (4) can be bounded as:

α
2E‖kn(θ̂n,β )−Ekn(θ̂n,β )‖2 ≤ α

2
(

q
L2R2 +4 f∗L

8β 2 +
L2

2β
+

+
q
2

)
σ

2
wE‖θ̂n−θ∗‖2 +

√
qσ1

v α2L
β

E‖θ̂n−θ∗‖+

+α
2L2E‖θ̂n−Eθ̂n‖2+2α

2L(
√

qσ1
v

β
+
√

qβL)E‖θ̂n−Eθ̂n‖+

+α
2(

σ2
v +2q f 2

∗σ2
w

4β 2 +
qβ 2σ2

wL2

8
+

qL2

4
+

q f∗σ2
wL

2
+

q3/2σ1
v L

2
).

In the following, we will use as en =
√

E‖θ̂n−θ∗‖2 the
bounds give by the theorem 1. The variance can be bounded
as:

E‖θ̂n+1−Eθn+1‖2 ≤ (1−2αµ +α
2L2)E‖θ̂n−Eθ̂n‖2+

+2α
2L(
√

qσ1
v

β
+
√

qβL)E‖θ̂n−Eθ̂n‖+

+α
2
(

q
L2R2 +4 f∗L

8β 2 +
L2

2β
+

q
2

)
σ

2
we2

n +

√
qσ1

v α2L
β

en+

+α
2(

σ2
v +2q f 2

∗σ2
w

4β 2 +
qβ 2σ2

wL2

8
+

qL2

4
+

q f∗σ2
wL

2
+

q3/2σ1
v L

2
).
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In the following, we use the inequality under the integral

E h‖θ̂n−Eθn‖ ≤ E
ε

2
‖θ̂n−Eθn‖2 +

h2

2ε
.

E‖θ̂n+1−Eθn+1‖2 ≤ kE‖θ̂n−Eθn‖2 +hE‖θ̂n−Eθn‖+

+l ≤ (k+ ε/2)E‖θ̂n−Eθn‖2 + l +
h2

2ε
.

Denote δn =
√

E‖θ̂n−Eθ̂n‖2. Iterating this inequality for
n− 1,n− 2, . . . ,0 and using the fact that δ0 = 0 we get
the inequality and the asymptotic bound from the theorem
statement.

QED
Theorem 3. Mean squared error for SPSA with fixed

step size.
Denote

k = 1−2αµ +α
2
(

σ
2
w(

δ2(L2R2 +4 f∗L)
8β 2 +

2δ2L2 +δ4L2

4
)+

+L2
δ4

)
, h = α

2(βδ5L2 +
Lσ1

v δ3

β
)+αβδ2L,

l = α
2(

δ2(2σ2
w f 2
∗ +σ2

v )

4β 2 +
δ4(σ

2
w f∗L+σ1

v L)
2

+

+
β 2δ6L2(σ2

w +2)
8

).

For the algorithm (2) in the assumptions stated above if k+
ε/2 ∈ (0,1) for some sufficiently small ε > 0 the estimates
θ̂n satisfy the following inequalities:

E‖θ̂n−θ∗‖2 ≤ (k+ ε/2)n‖θ̂0−θ∗‖2+

+
(h2/(2ε)+ l)(1− (k+ ε/2)n)

1− k− ε/2
,

lim sup
n→∞

(E‖θ̂n−θ∗‖2)1/2≤ h
2(1− k)

(1+
√

1+4l(1− k)h−2).

Proof.

‖θ̂n+1−θ∗‖2 ≤ ‖θ̂n−θ∗‖2−2α〈θ̂n−θ∗,gn(θ̂n,β ,∆n)〉+
(5)

+α
2‖gn(θ̂n,β ,∆n)‖2.

Let us bound the terms one by one. ‖gn(θ̂n,β ,∆n)‖2 :

‖gn(θ̂n,β ,∆n)‖2 = ‖∆n‖2(2β )−2
(
(w(1)

n −1) f (θ̂n +β∆n)+

+(1−w(2)
n ) f (θ̂n−β∆n)+

+(v1
n− v2

n)+( f (θ̂n +β∆n)− f (θ̂n−β∆n))
)2

En(2β )−2
σ

2
w‖∆n‖2( f 2(θ̂n +β∆n)+ f 2(θ̂n−β∆n))≤ (6)

‖θ̂n−θ‖2
σ

2
w(

δ2(L2R2 +4 f∗L)
8β 2 +

2δ2L2 +δ4L2

4
)+

+σ
2
w(

δ2 f 2
∗

2β 2 +
δ4 f∗L

2
+

β 2δ6L2

8
).

These bounds lead to the following bound for the conditional
expectation of the squared pseudogradient in (5):

En‖gn(θ̂n,β ,∆n)‖2 ≤ ‖θ̂n−θ‖2
(

σ
2
w(

δ2(L2R2 +4 f∗L)
8β 2 +

+
2δ2L2 +δ4L2

4
)+L2

δ4

)
+‖θ̂n−θ∗‖(βδ5L2 +

Lσ1
v δ3

β
)+

+
δ2(2σ2

w f 2
∗ +σ2

v )

4β 2 +
δ4(σ

2
w f∗L+σ1

v L)
2

+
β 2δ6L2(σ2

w +2)
8

.

−2〈θ̂n−θ∗,gn(θ̂n,β ,∆n)〉 :
For the second term of (5) we get:

En{−2α〈θ̂n−θ∗,gn(θ̂n,β ,∆n)〉} ≤ −2αµ‖θ̂n−θ∗‖2+

+
L
2

αβδ2‖θ̂n−θ∗‖.

If we take the unconditional expectation of the both sides
of (5), we get

e2
n ≤ ke2

n−1 +hen−1 + l,

where en = E‖θ̂n − θ∗‖2 and k,h, l are as defined in the
theorem. Analogously to previous theorems, we finish the
proof.

Theorem 4. Variance for SPSA with fixed step size.
Denote

k = 1−2αµ +α
2L2, h = 2∗α

2 ∗q3/2
βL2 +αβδ2L,

l = e2
nα

2
(

σ
2
w(

δ2(L2R2 +4 f∗L)
8β 2 +

2δ2L2 +δ4L2

4
)+

+(q−1)L2
)
+α

2{(δ2(2σ2
w f 2
∗ +σ2

v )

4β 2 +
δ4L(σ2

w f∗+σ1
v )

2
+

+
β 2δ6L2(σ2

w +2)
8

)}.

For the algorithm (2) in the assumptions stated above
if k + ε/2 ∈ (0,1) for some sufficiently small ε > 0 the
variance E‖θ̂n−Eθ̂n‖2 of estimates θ̂n satisfies the following
inequalities :

E‖θ̂n−Eθ̂n‖2 ≤ (h2/(2ε)+ l)(1− (k+ ε/2)n)

1− k− ε/2
,

lim sup
n→∞

(E‖θ̂n−Eθ̂n‖2)1/2 ≤ h
2(1− k)

(1+

+
√

1+4l(1− k)h−2).

Proof.

E‖θ̂n+1−Eθ̂n+1‖2 = E‖θ̂n−θ‖2−2〈θ̂n−Eθ̂n,

gn(θ̂n,β ,∆n)−Egn(θ̂n,β ,∆n)〉+

+E‖gn(θ̂n,β ,∆n)−Egn(θ̂n,β ,∆n)‖2. (7)
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• E〈θ̂n−Eθ̂n,gn(θ̂n,β ,∆n)−Egn(θ̂n,β ,∆n)〉:

−2αE〈θ̂n−Eθ̂n,gn(θ̂n,β ,∆n)−Egn(θ̂n,β ,∆n)〉 ≤

≤ −2αµE‖θ̂n−Eθ̂n‖2 +αβδ2LE‖θ̂n−Eθ̂n‖.

• E‖gn(θ̂n,β ,∆n)−Egn(θ̂n,β ,∆n)‖2:
For the whole third term of (7),

E‖gn(θ̂n,β ,∆n)−Egn(θ̂n,β ,∆n)‖2 ≤ E‖θ̂n−Eθ̂n‖2L2+

+E‖θ̂n−Eθ̂n‖2δ3βL2 +E‖θ̂n−θ∗‖2
(

σ
2
w·

(
δ2(L2R2 +4 f∗L)

8β 2 +
2δ2L2 +δ4L2

4
)+(q−1)L2

)
+

+σ
2
w(

δ2 f 2
∗

2β 2 +
δ4 f∗L

2
+

β 2δ6L2

8
)+

δ2

4β 2 σ
2
v +

δ6β 2L2

4
+

+
δ4σ1

v L
2

.

E‖θ̂n+1−Eθn+1‖2 ≤ (1−2αµ +α
2L2)E‖θ̂n−Eθ̂n‖2+

+E‖θ̂n−Eθ̂n‖(2α
2
δ3βL2 +αβδ2L)+

+E‖θ̂n−θ∗‖2
α

2
(

σ
2
w(

δ2(L2R2 +4 f∗L)
8β 2 +

2δ2L2 +δ4L2

4
)+

+(q−1)L2
)
+α

2{(δ2(2σ2
w f 2
∗ +σ2

v )

4β 2 +
δ4L(σ2

w f∗+σ1
v )

2
+

+
β 2δ6L2(σ2

w +2)
8

)}.

In the following, we use the inequality under the integral

E h‖θ̂n−Eθn‖ ≤ E
ε

2
‖θ̂n−Eθn‖2 +

h2

2ε
.

and in analogous to theorem 2 way we get the inequality and
the asymptotic bound from the theorem statement. QED

V. SIMULATIONS

We want to compare the performance of the algorithms at
some test problem. We run experiment with

yn = (1+ξn)‖x‖2,

where ξn is Gaussian with σ = 3, θ̂0 =(1, . . . ,1)T , dimension
q = 10, domain is a ball with radius R = 10. In this problem,
the standard deviation of multiplicative noise is 3 times more
than the scale of expected function, so th eamount of noise
is high. To analyze only case with multiplicative noise, we
do not use any additive noise here. We allow each algorithm
to do 2qx100 = 2000 measurements.

The minimal expected bound on the error of FDSA
according to theorem 1 is achieved when αFD = 0.0041,
βFD = 5. The predicted theoretically by theorem 1 expected
square of the norm of esimation error E‖θ̂100−θ∗‖2 is shown
at the fig. 1 as well as error averaged from 1000 runs of the
algorithm with the same parameters.

The minimal expected bound on the error of SPSA accord-
ing to theorem 3 is achieved when αSP = 0.00036, βSP = 1.5.
The predicted theoretically by theorem 3 expected square
of the norm of esimation error E‖θ̂1000−θ∗‖2 is shown at
the fig. 2 as well as error averaged from 1000 runs of the
algorithm with the same parameters.

At the fig. 3 you see comparison of FDSA and SPSA with
theoretically optimal parameters on the longer run with 10
000 measurements. SPSA variance is slightly lower, maybe
that is because the theoretically optimal parameters for both
methods were chosen on a finite grid, and in case of SPSA
the value was closer to optimal one. We conclude that
although FDSA bounds are tighter both for expected error
norm squared and for variance, the parameters found by
optimizing theoretical bounds for the algorithms are giving
slightly better results when using SPSA comparing to FDSA.

At the fig. 4 you see the performance of both algorithms
with practically optimal parameters. Theoretical bounds are
not available for these cases since the theorem conditions
are violated (k > 1). We see that on the long run algorithms
give equal results both in expected error norm and in
variance, although the variance of SPSA estimates is lower
in the middle of the graph. This effect may be explained
from comparative analysis of the theoretical bounds and
emphasizes the importance of variance bounds in addition
to mean squared error bounds.

VI. CONCLUSIONS

In this paper we have shown the theoretical bounds for
mean-squared estimation error and variance of estimates for
the FDSA and SPSA algorithms with fixed step sizes in case
of multiplicative noise. We have illustrated the bounds with
numerical simulations and we have noted that the eperiments
show similar performance of the algorithms in this setting.

In future we are planning to improve the precision of
the bounds and generalize the results given here to a case
of nonstationary optimization with minimum point slowly
moving in time. We will perform asymptotic analysis of
the theorem bounds and compare the algorithms’ asymptotic
performance.
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over 1000 runs error (solid). Right: variance bound from theorem 2 (dashed)
and actual variance estimated using 1000 trial runs (solid)

Fig. 2. Performance of SPSA algorithm with theoretically best parameters.
Left: squared estimation error bound from theorem 3 (dashed) and averaged
over 1000 runs error (solid). Right: variance bound from theorem 4 (dashed)
and actual variance estimated using 1000 trial runs (solid)
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FDSA (solid) and SPSA (dashed). Right: variance estimated using 100 trial
runs for FDSA (solid) and SPSA (dashed). The iterations are counted in
SPSA scale, he methods are synchronized by measurements (the estimated
number x is the estimated having 2x measurements)

Fig. 4. Performance of SPSA and FDSA algorithm with practically best
parameters. Left: squared estimation errors averaged over 100 runs error for
FDSA (solid) and SPSA (dashed). Right: variance estimated using 100 trial
runs for FDSA (solid) and SPSA (dashed). The iterations are counted in
SPSA scale, he methods are synchronized by measurements (the estimated
number x is the estimated having 2x measurements)
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